Collaborative Research: Advancing Robust Control and State Estimation of Converter-Based Power Systems
合作研究:推进基于转换器的电力系统的鲁棒控制和状态估计
基本信息
- 批准号:2013739
- 负责人:
- 金额:$ 26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Future power grids, the nation’s most critical infrastructure, will be extremely difficult to manage due to large-scale integration of renewable energy resources. The strategy proposed in this project is aided by new grid technologies (converter-based assets in wind/solar farms and high-frequency sensing devices) that are developed and deployed to allow new real-time control-theoretic algorithms to be implemented with little overhead---while guaranteeing grid stability and resilience. The literature in this area had addressed various scientific research questions, but mostly adopted simplified models that cannot adequately capture the real-time operation of future grids. This project addresses this science gap by developing a new set of real-time algorithms, leading to a more robust operation of future power grids characterized with high penetration of renewable energy resources. These control algorithms can be implemented by grid operators throughout the nation. The project will also include: a) hosting an outreach workshop on renewable energy systems for a low-income, minority-majority, and female-only high school in San Antonio; b) organizing a technical industry workshop that showcases the created algorithms in the state of Iowa; c) disseminating the created scientific methods within the curricula at the University of Texas at San Antonio and Iowa State University.This project aims at modernizing grid control methods which has traditionally relied on linear systems theory. In particular, the control-theoretic literature addressed a plethora of grid challenges with a focus on linearized, differential equation models whereby algebraic constraints (i.e., power flows) are eliminated. This is in contrast with the more realistic, complex nonlinear differential algebraic equation (NDAE) models. Linearizing grid models around operating points and eliminating algebraic constraints have proven to be a reliable strategy---a trade-off between complexity and tractability. Yet as grids are increasingly pushed to their limits via intermittent renewables, their physical states risk escaping operating regions due to a poor prediction of wind or solar. In lieu of linear differential equation models, control of NDAEs is highly beneficial for grids that are characterized by highly uncertain renewables. This guarantees grid stability for larger operating conditions. Given the limitations of present power system models and the lack of theoretical foundations for control and dynamic state estimation of grid NDAEs, this project will: 1) create a physically representative NDAE model of a power system with a mix of conventional machines and a variety of converter-based technologies; 2) investigate a general theory of dynamic state estimation and robust feedback control algorithms that consider the uncertain nature of power grids modeled via higher-order NDAEs; 3) obtain computationally tractable routines that can be implemented in control centers of power grids. The created theoretical foundations have applications in wide area control, converter-based control, centralized and decentralized and robust dynamic state estimation. This research is critical to guarantee acceptable performance of modern and future power systems and will lead to advancing the state-of-the-art of grid control studies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于可再生能源资源的大规模整合,未来的电网作为国家最关键的基础设施将极其难以管理,该项目提出的战略得到了新电网技术(风能/太阳能发电场和基于转换器的资产)的帮助。高频传感设备)的开发和部署是为了以很少的开销实现新的实时控制理论算法,同时保证电网的稳定性和弹性。该领域的文献已经解决了各种科学研究问题。大多数采用的模型无法充分捕捉该项目通过开发一套新的实时算法来解决这一科学差距,从而实现以可再生能源高渗透率为特征的未来电网的更稳健运行。该项目还将包括:a) 为圣安东尼奥的一所低收入、少数族裔和女性高中举办可再生能源系统外展研讨会;b) 组织技术行业研讨会;展示了爱荷华州创建的算法 c)在德克萨斯大学圣安东尼奥分校和爱荷华州立大学的课程中传播所创建的科学方法。该项目旨在使传统上依赖于线性系统理论的网格控制方法现代化,特别是控制理论文献涉及大量的问题。网格挑战侧重于消除代数约束(即功率流)的线性微分方程模型,这与更现实、复杂的非线性微分代数方程(NDAE)模型形成鲜明对比。围绕运行点的电网模型和消除代数约束已被证明是一种可靠的策略——复杂性和易处理性之间的权衡,然而,随着间歇性可再生能源日益将电网推向极限,其物理状态可能会因以下原因而脱离运行区域。考虑到现有电力系统模型的局限性,NDAE 的控制对于具有高度不确定性的可再生能源的电网来说非常有益,这可以保证较大运行条件下的电网稳定性。这由于缺乏电网 NDAE 控制和动态估计的理论基础,该项目将:1)混合传统机器和各种基于转换器的技术,创建具有物理代表性的电力系统 NDAE 模型;2)研究通用的 NDAE 模型;动态状态估计理论和鲁棒反馈控制算法,考虑通过高阶 NDAE 建模的电网的不确定性;3)获得可在电网控制中心实现的计算易于处理的例程。这项研究对于保证现代和未来电力系统的可接受的性能至关重要,并将推动最先进的电网控制的发展。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transient Stability and Active Protection of Power Systems With Grid-Forming PV Power Plants
- DOI:10.1109/tpwrs.2022.3165704
- 发表时间:2023-01
- 期刊:
- 影响因子:6.6
- 作者:Soummya Roy;H. V. Pico
- 通讯作者:Soummya Roy;H. V. Pico
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hugo Villegas Pico其他文献
Hugo Villegas Pico的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hugo Villegas Pico', 18)}}的其他基金
CAREER: Advances to the EMT Modeling and Simulation of Restoration Processes for Future Grids
职业:未来电网恢复过程的 EMT 建模和仿真的进展
- 批准号:
2338621 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
相似国自然基金
基于FRET受体上升时间的单分子高精度测量方法研究
- 批准号:22304184
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脂质多聚复合物mRNA纳米疫苗的构筑及抗肿瘤治疗研究
- 批准号:52373161
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
屏障突破型原位线粒体基因递送系统用于治疗Leber遗传性视神经病变的研究
- 批准号:82304416
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
细胞硬度介导口腔鳞癌细胞与CD8+T细胞间力学对话调控免疫杀伤的机制研究
- 批准号:82373255
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
乙酸钙不动杆菌上调DUOX2激活PERK/ATF4内质网应激在炎症性肠病中的作用机制研究
- 批准号:82300623
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:
2414607 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:
2414606 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342497 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Standard Grant