Entropy-Consistent Moment-Closure Approximations of Kinetic Boltzmann Equations

动力学玻尔兹曼方程的熵一致矩闭合近似

基本信息

  • 批准号:
    2012699
  • 负责人:
  • 金额:
    $ 29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This research is concerned with the development of mathematical models and corresponding state-of-the-art computational methods for simulating and predicting the dynamics of complex fluid systems, such as those arising from multiphase flows and plasma. The ability to predict the dynamics of these complex fluid systems is of vital importance in understanding a wide range of phenomena such as particulate flow in the atmosphere, fuel sprays in combustion engines, magnetically-confined fusion reactors, laser-plasma accelerators, space weather, and astrophysical events. The underlying physics of such systems are often well-represented by kinetic models that represent the state of the fluid in terms of probability density functions. The main challenge in accurately simulating these kinetic models is that solutions live in a high-dimensional phase space and contain information over wide-ranging spatial and temporal scales. The goal of this research is to develop reduced models that simultaneously capture the important physics and can be more readily solved on modern computer architectures. As part of this research effort, graduate and undergraduate students will be trained in mathematical modeling and computational mathematics. Students from groups that are underrepresented in applied and computational mathematics will be encouraged to participate in the research efforts. The primary objective of this research is to develop accurate and efficient computational methods for solving kinetic models of both polydisperse multiphase flows and plasma flows via entropy-consistent moment closures. The purpose of moment-closure techniques is to reduce high-dimensional kinetic models to more computationally tractable approximations. However, determining a suitable moment closure is a mathematical challenge; a general approach that combines desirable mathematical features remains elusive. This research will pursue two related approaches: (1) using quasi-exponential representations of the underlying kinetic distribution functions, and (2) using delta functions in conjunction with entropy maximization. Novel moment-inversion algorithms and high-order numerical schemes will be developed. The resulting codes will be implemented on massively parallel computers. These techniques will be applied to problems in polydisperse multiphase flows and plasma flows.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究涉及数学模型和相应的最新计算方法,用于模拟和预测复杂流体系统的动态,例如由多相流和等离子体引起的动态。预测这些复杂流体系统动力学的能力对于理解多种现象,例如大气中的颗粒流,燃烧发动机中的燃料喷雾,磁性融合融合反应器,激光 - 播出器,空间天气,天气,太空融合反应器,燃料喷雾至关重要。和天体物理事件。这种系统的潜在物理学通常由动力学模型代表了概率密度函数方面代表流体状态的动力学模型。准确模拟这些动力学模型的主要挑战是,解决方案生活在高维相空间中,并包含在广泛的空间和时间尺度上的信息。这项研究的目的是开发简化的模型,这些模型同时捕获重要的物理学,并且可以在现代计算机架构上更容易解决。作为这项研究工作的一部分,研究生和本科生将接受数学建模和计算数学的培训。将鼓励来自应用程序和计算数学代表不足的小组的学生参加研究工作。这项研究的主要目的是开发准确有效的计算方法,以通过熵一致的力矩闭合来求解多分散多相流和等离子体流的动力学模型。力矩闭合技术的目的是将高维动力学模型降低到更具计算方法的近似值。但是,确定合适的力矩闭合是数学挑战。结合理想的数学特征的一般方法仍然难以捉摸。这项研究将采用两种相关方法:(1)使用基本动力学分布函数的准指数表示,以及(2)使用Delta函数与熵最大化结合使用。新型的力矩插入算法和高阶数值方案将开发。结果代码将在大规模并行计算机上实现。这些技术将应用于多分散多相流和等离子流中的问题。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估标准,被认为值得通过评估来获得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simulating two-phase flows with thermodynamically consistent energy stable Cahn-Hilliard Navier-Stokes equations on parallel adaptive octree based meshes
  • DOI:
    10.1016/j.jcp.2020.109674
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Makrand A. Khanwale;Alec Lofquist;H. Sundar;J. Rossmanith;B. Ganapathysubramanian
  • 通讯作者:
    Makrand A. Khanwale;Alec Lofquist;H. Sundar;J. Rossmanith;B. Ganapathysubramanian
Positivity-Preserving Lax–Wendroff Discontinuous Galerkin Schemes for Quadrature-Based Moment-Closure Approximations of Kinetic Models
  • DOI:
    10.1007/s10915-023-02117-5
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Erica R. Johnson;J. Rossmanith;Christine Vaughan
  • 通讯作者:
    Erica R. Johnson;J. Rossmanith;Christine Vaughan
A projection-based, semi-implicit time-stepping approach for the Cahn-Hilliard Navier-Stokes equations on adaptive octree meshes
  • DOI:
    10.1016/j.jcp.2022.111874
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Makrand A. Khanwale;K. Saurabh;Masado Ishii;H. Sundar;J. Rossmanith;Baskar-Ganapathysubramanian
  • 通讯作者:
    Makrand A. Khanwale;K. Saurabh;Masado Ishii;H. Sundar;J. Rossmanith;Baskar-Ganapathysubramanian
A fully-coupled framework for solving Cahn-Hilliard Navier-Stokes equations: Second-order, energy-stable numerical methods on adaptive octree based meshes
  • DOI:
    10.1016/j.cpc.2022.108501
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Makrand A. Khanwale;K. Saurabh;Milinda Fernando;V. Calo;J. Rossmanith;H. Sundar;B. Ganapathysubramanian
  • 通讯作者:
    Makrand A. Khanwale;K. Saurabh;Milinda Fernando;V. Calo;J. Rossmanith;H. Sundar;B. Ganapathysubramanian
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Rossmanith其他文献

James Rossmanith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Rossmanith', 18)}}的其他基金

Micro-Macro Decomposition Numerical Schemes for Multiscale Simulation of Plasma
等离子体多尺度模拟的微观-宏观分解数值方案
  • 批准号:
    1620128
  • 财政年份:
    2016
  • 资助金额:
    $ 29万
  • 项目类别:
    Continuing Grant
Discontinuous Galerkin Schemes for Fluid, Kinetic, and Multiscale Fluid/Kinetic Models in Plasma Physics Applications
等离子体物理应用中流体、动力学和多尺度流体/动力学模型的不连续伽辽金方案
  • 批准号:
    1419020
  • 财政年份:
    2014
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
Space-time DG-FEMs for Fluid and Kinetic Plasma Models
用于流体和动力学等离子体模型的时空 DG-FEM
  • 批准号:
    1016202
  • 财政年份:
    2010
  • 资助金额:
    $ 29万
  • 项目类别:
    Continuing Grant
Computational Methods for Astrophysical Flows
天体物理流的计算方法
  • 批准号:
    0711885
  • 财政年份:
    2007
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
Wave Propagation Methods for Astrophysical Flows
天体物理流的波传播方法
  • 批准号:
    0619037
  • 财政年份:
    2005
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
Wave Propagation Methods for Astrophysical Flows
天体物理流的波传播方法
  • 批准号:
    0409972
  • 财政年份:
    2004
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant

相似国自然基金

吻内侧被盖核GABA能神经元调控持续稳定麻醉状态的作用及机制
  • 批准号:
    32371033
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
供应链数字减碳能力的构建机理及其对可持续供应链绩效的作用机制研究
  • 批准号:
    72302183
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
类鼻疽菌O抗原生物合成及其介导的免疫逃逸在该菌持续性感染中的作用机制研究
  • 批准号:
    82372265
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
在线零售的可持续配送系统设计与优化研究
  • 批准号:
    72310107001
  • 批准年份:
    2023
  • 资助金额:
    190 万元
  • 项目类别:
    国际(地区)合作与交流项目
基于多视角的数字创业生态系统可持续性研究
  • 批准号:
    72371234
  • 批准年份:
    2023
  • 资助金额:
    39 万元
  • 项目类别:
    面上项目

相似海外基金

Formulating microstructural equivalence: A route to consistent scale-up of medicine manufacture
制定微观结构等效性:药物生产持续扩大规模的途径
  • 批准号:
    EP/Z532988/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29万
  • 项目类别:
    Research Grant
Assessing the role of uncertainty shocks in the macroeconomy: The behavior of model-consistent wage and price markups
评估不确定性冲击在宏观经济中的作用:模型一致的工资和价格加成的行为
  • 批准号:
    24K16357
  • 财政年份:
    2024
  • 资助金额:
    $ 29万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Learning to Extract Consistent Event Graphs from Long and Complex Documents
职业:学习从长而复杂的文档中提取一致的事件图
  • 批准号:
    2340435
  • 财政年份:
    2024
  • 资助金额:
    $ 29万
  • 项目类别:
    Continuing Grant
RP4 LEAP
RP4飞跃
  • 批准号:
    10595904
  • 财政年份:
    2023
  • 资助金额:
    $ 29万
  • 项目类别:
CAREER: Consistent Continuum Formulation and Robust Numerical Modeling of Non-Isothermal Phase Changing Multiphase Flows
职业:非等温相变多相流的一致连续体公式和鲁棒数值模拟
  • 批准号:
    2234387
  • 财政年份:
    2023
  • 资助金额:
    $ 29万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了