Incidental learning across statistically-structured input in active tasks

主动任务中统计结构输入的附带学习

基本信息

  • 批准号:
    1950054
  • 负责人:
  • 金额:
    $ 82.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

The natural world is rich with patterns, and organisms learn these patterns through passive exposure. This presents a powerful and flexible means of learning about the world that does not involve explicit instruction that appears to play an important role in spoken language learning. However, not all patterns can be learned by passive exposure alone. This research project investigates how learning across patterns of experience proceeds when passive exposure is insufficient to drive learning and yet there is no explicit instruction. The prior work that this project builds on suggests that real-world statistical learning may capitalize on input regularities’ global temporal alignment with behaviorally-relevant actions and events to hasten learning. Learning across statistical regularities can be incidental, and not overtly driven by an intention to learn, while still taking place in the context of an active task that generates valuable predictions and rewarding outcomes. This perspective may be transformative in how we think about human learning of statistically-structured input in complex, naturalistic environments. Findings from this research will inform the design of learning interventions that capitalize on these learning principles to be useful for diverse communities of learners. The proposed research will advance a new research approach, empirical tests of mechanistic predictions, and complementary information from behavior, electrophysiology and functional magnetic resonance imaging to understand statistical learning under more natural circumstances involving interplay among active behavior, multimodal input, selective attention, and statistical input regularities. It pursues the twin hypotheses that (1) active engagement in a rich, environment can support statistical learning by virtue of loose temporal alignment of statistically-structured input with behaviorally-relevant actions, objects, and events and (2) that this incidental statistical learning drives the emergence of selective attention to behaviorally relevant regularities, creating a virtuous cycle that promotes later learning. The team will also conduct several outreach activities including collecting data from non-university samples via a “data-truck” and providing science of learning outreach to high school students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
然而,自然世界充满了模式,生物体通过被动接触来学习这些模式,这提供了一种强大而灵活的了解世界的方法,而无需涉及在口语学习中发挥重要作用的指令。并非所有模式都可以仅通过被动暴露来学习。这项研究预测了当被动暴露不足以驱动学习并且没有明确的指导时,跨经验模式的学习如何进行。统计学习可以利用输入规律的全局时间对齐促进学习的行为相关的行动和事件可能是偶然的,并且不是由学习意图明显驱动的,同时仍然发生在产生有价值的预测和奖励结果的活跃任务的背景下。这项研究的结果将改变我们对人类在复杂、自然的环境中学习技术结构输入的看法,该研究将为利用这些学习原则对不同学习者群体有用的学习干预措施的设计提供信息。推进新的研究方法、机械预测的实证检验以及来自行为、电生理学和功能磁共振成像的补充信息,以理解更自然情况下的统计学习,涉及主动行为、多模态输入、选择性注意和统计输入规律之间的相互作用。假设 (1) 积极参与丰富的环境可以通过分析结构输入与相关行为、对象和事件的松散时间对齐来支持统计学习行为,以及 (2) 这种偶然的统计学习推动了统计学习的出现选择性关注该团队还将开展多项推广活动,包括通过“数据卡车”从非大学样本中收集数据,并向高中生提供学习科学推广。通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A neural network model of the effect of prior experience with regularities on subsequent category learning
具有规律性的先验经验对后续类别学习影响的神经网络模型
  • DOI:
    10.1016/j.cognition.2021.104997
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Roark, Casey L.;Plaut, David C.;Holt, Lori L.
  • 通讯作者:
    Holt, Lori L.
Long-term priors constrain category learning in the context of short-term statistical regularities
长期先验限制了短期统计规律背景下的类别学习
  • DOI:
    10.3758/s13423-022-02114-z
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Roark, Casey L.;Holt, Lori L.
  • 通讯作者:
    Holt, Lori L.
Auditory category learning is robust across training regimes
听觉类别学习在整个培训体系中都很强大
  • DOI:
    10.1016/j.cognition.2023.105467
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Obasih, Chisom O.;Luthra, Sahil;Dick, Frederic;Holt, Lori L.
  • 通讯作者:
    Holt, Lori L.
The representational glue for incidental category learning is alignment with task-relevant behavior.
附带类别学习的代表性粘合剂是与任务相关的行为保持一致。
  • DOI:
    10.1037/xlm0001078
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Roark, Casey L.;Lehet, Matthew I.;Dick, Frederic;Holt, Lori L.
  • 通讯作者:
    Holt, Lori L.
Incidental auditory category learning and visuomotor sequence learning do not compete for cognitive resources
附带听觉类别学习和视觉运动序列学习不竞争认知资源
  • DOI:
    10.3758/s13414-022-02616-x
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gabay, Yafit;Madlansacay, Michelle;Holt, Lori L.
  • 通讯作者:
    Holt, Lori L.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lori Holt其他文献

Children of Alzheimer patients: more data needed.
阿尔茨海默病患者的孩子:需要更多数据。
Middle-Aged Children of Alzheimer Parents, A Pilot Study: Stable Neurocognitive Performance at 20-Year Follow-up
阿尔茨海默病父母的中年儿童试点研究:20 年随访中神经认知表现稳定
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    L. Jarvik;A. la Rue;I. Gokhman;Tracy Harrison;Lori Holt;B. Steh;J. Harker;Scott W Larson;Pauline S. Yaralian;S. Matsuyama;N. Rasgon;D. Geschwind;N. Freimer;E. Jimenez;Jeffrey Schaeffer
  • 通讯作者:
    Jeffrey Schaeffer
Psychology of auditory perception.
听觉心理学。

Lori Holt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lori Holt', 18)}}的其他基金

Incidental learning across statistically-structured input in active tasks
主动任务中统计结构输入的附带学习
  • 批准号:
    2420979
  • 财政年份:
    2023
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Continuing Grant
SBE-UKRI: Contextually and probabilistically weighted auditory selective attention: from neurons to networks
SBE-UKRI:上下文和概率加权听觉选择性注意:从神经元到网络
  • 批准号:
    2414066
  • 财政年份:
    2023
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Standard Grant
SBE-UKRI: Contextually and probabilistically weighted auditory selective attention: from neurons to networks
SBE-UKRI:上下文和概率加权听觉选择性注意:从神经元到网络
  • 批准号:
    2219521
  • 财政年份:
    2022
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Mechanisms of adaptive plasticity in speech perception
博士论文研究:言语感知的适应性可塑性机制
  • 批准号:
    1941357
  • 财政年份:
    2020
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Standard Grant
NSF/SBE-BSF: Trajectories of acquisition, consolidation and retention in incidental auditory category learning
NSF/SBE-BSF:附带听觉类别学习中的习得、巩固和保留轨迹
  • 批准号:
    1655126
  • 财政年份:
    2017
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research: Investigating generalization, transfer, and representation resulting from non-native speech category training
博士论文研究:研究非母语语音类别训练产生的泛化、迁移和表征
  • 批准号:
    1422756
  • 财政年份:
    2014
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Standard Grant
Learning to Accommodate Variation in Speech Input
学习适应语音输入的变化
  • 批准号:
    0921362
  • 财政年份:
    2009
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Learning Complex Auditory Categories
合作研究:学习复杂的听觉类别
  • 批准号:
    0746067
  • 财政年份:
    2008
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Continuing Grant
DHB: Collaborative Research: Cognitive and Social Development in Linguistic Change: A Pilot Study
DHB:合作研究:语言变化中的认知和社会发展:试点研究
  • 批准号:
    0523241
  • 财政年份:
    2005
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Standard Grant
Learning Complex Auditory Categories
学习复杂的听觉类别
  • 批准号:
    0345773
  • 财政年份:
    2004
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于自监督学习的非规则网格混采数据分离与重建方法研究
  • 批准号:
    42304125
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
不完备多视图学习与缺失信息复原研究
  • 批准号:
    62372136
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
病理图像深度学习可解释性关键技术研究
  • 批准号:
    62371409
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
  • 批准号:
    82371878
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SLES: Guaranteed Tubes for Safe Learning across Autonomy Architectures
合作研究:SLES:跨自治架构安全学习的保证管
  • 批准号:
    2331879
  • 财政年份:
    2024
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SLES: Guaranteed Tubes for Safe Learning across Autonomy Architectures
合作研究:SLES:跨自治架构安全学习的保证管
  • 批准号:
    2331878
  • 财政年份:
    2024
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Standard Grant
Building a Calculus Active Learning Environment Equally Beneficial Across a Diverse Student Population
建立一个对不同学生群体同样有益的微积分主动学习环境
  • 批准号:
    2315747
  • 财政年份:
    2024
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Standard Grant
When Teachers "Aren't There": Detecting, Evaluating, and Learning from Rote Teaching Across Development
当教师“不在场”时:从发展过程中的死记硬背中检测、评估和学习
  • 批准号:
    2327447
  • 财政年份:
    2023
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Standard Grant
RII Track-4: NSF:Assessing Dynamic Connectivity of Streams and Wetlands across Spatial and Human Gradients with Deep Learning
RII Track-4:NSF:利用深度学习评估跨空间和人类梯度的溪流和湿地的动态连通性
  • 批准号:
    2229616
  • 财政年份:
    2023
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了