UC San Diego MRSEC: an NSF Materials Research Science and Engineering Center
加州大学圣地亚哥分校 MRSEC:NSF 材料研究科学与工程中心
基本信息
- 批准号:2011924
- 负责人:
- 金额:$ 1800万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Cooperative Agreement
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nontechnical Abstract: The growth, prosperity, security, and quality of life of humans are in large part determined by the materials they use. The mission of the UC San Diego Materials Research Science and Engineering Center (UCSD MRSEC) is to perform innovative, interdisciplinary materials research relevant to societal needs, and to prepare students to become future leaders in materials design and discovery. The research effort of the Center is conducted within two highly interdisciplinary groups. The first group is deploying the most powerful computers available to understand, predict, and ultimately control the properties of materials at microscopic size scales—sizes just larger than molecular dimensions. It is in this size regime where many useful properties of materials emerge. For example, changes in the shape of metal particles at this scale can change their color, their efficiency as a catalyst, or their sensitivity in a medical diagnostic test. The second group is using the tools of the biotechnology revolution—in particular, genetic engineering and synthetic biology—to build new classes of materials that can respond to stimuli from their environment in useful ways. Both groups are targeting fundamental breakthroughs that can impact a number of critically important needs: faster, more accurate sensors for medical diagnostic tests, more efficient decontamination of chemical or biological hazards, better catalysts to reduce the cost of industrial processes, and improved therapeutics for treating diseases. The fundamental research within the two groups is empowered by an integrated educational program to prepare a diverse community of trainees to enhance national proficiencies in the science, technology, engineering, and mathematics fields. Immersive training for scientists across all levels – novice through established – develops technical competency in laboratory procedures, advanced instrumentation, and computational methods. Internship and scientist-in-residence programs fuel vital exchange of ideas and leverage partnerships with industry, national laboratories, and other collaborators. Partnership with the Fleet Science Center builds researchers’ skills in science communication and connects the UCSD MRSEC with the diverse San Diego community to address community-articulated needs. Technical Abstract: The UCSD MRSEC addresses two fundamental challenges: (1) How to predict and direct the assembly of materials at the mesoscale, where macroscopic behavior and properties emerge (IRG1: Predictive Assembly); and (2) How to deploy the tools of synthetic biology to build soft materials that meld the characteristics of living systems with the performance requirements of advanced engineered materials (IRG2: Stimuli-Responsive Living Polymeric Materials). IRG1 focuses on the rational design of innovative, functional mesomaterials with programmed plasmonic, catalytic, and structural properties. A computation-driven framework is being created to understand, predict, and design how shaped nanocomponents are used as material building blocks. The models developed bridge length and time scales relevant to mesoscale assembly. IRG2 integrates engineered living matter – photosynthetic organisms – into biological composites that respond to stimuli with genetically encoded outputs, such as chemical reagents and polymer feedstocks. The UCSD MRSEC creates unique resources to benefit the broader materials-research community: a MesoMaterials Design Facility – a virtual, computational facility, and an Engineered Living Materials Foundry, consisting of a bio-synthesis laboratory and soft-matter characterization tools. The Center’s educational goals include preparing the next generation of interdisciplinary materials scientists, and increasing diversity and inclusion in materials research. The Research Immersion in Materials Science and Engineering (RIMSE) Summer Schools provide intensive training in the areas of IRG research. Enabling professional development for Center members in science communication, a partnership with the Fleet Science Center facilitates meaningful engagement with the diverse San Diego community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:人类的生长,繁荣,安全和生活质量在很大程度上取决于它们使用的材料。加州大学圣地亚哥分校材料研究科学与工程中心(UCSD MRSEC)的任务是进行与社会需求相关的创新,跨学科材料研究,并准备成为学生成为材料设计和发现领域的未来领导者。该中心的研究工作在两个高度跨学科的群体中进行。第一组是部署最强大的计算机,以理解,预测和最终控制微观尺寸尺度的材料的性质 - 大小大于分子尺寸。正是在这种尺寸状态下出现了许多有用的材料的特性。例如,在此规模上,金属颗粒的形状变化可以改变其颜色,催化剂的效率或在医学诊断测试中的敏感性。第二组是使用生物技术革命的工具(尤其是基因工程和合成生物学)来构建可以以有用的方式从其环境中响应刺激的新材料。两组都针对可能影响许多至关重要的需求的基本突破:更快,更准确的传感器用于医疗诊断测试,更有效地对化学或生物学危害进行更有效的去污,更好的催化剂,以降低工业过程的成本,并改善治疗疾病的治疗。一项综合的教育计划赋予了两组中的基本研究,以准备多样化的学员社区,以增强科学,技术,工程和数学领域的国家能力。对各级科学家的身临其境的培训 - 通过已建立的新闻 - 开发人员在实验室程序,高级仪器和计算方法方面的技术能力。国际和科学家在居住计划中推动了重要的思想交流,并利用与行业,国家实验室和其他合作者建立伙伴关系。与车队科学中心的合作关系建立了研究人员在科学传播方面的技能,并将UCSD MRSEC与圣地亚哥潜水员社区联系起来,以满足社区明确的需求。技术摘要:UCSD MRSEC解决了两个基本挑战:(1)如何预测和指导材料组装在中尺度上,其中宏观行为和性质出现(IRG1:预测组装); (2)如何部署合成生物学的工具来构建与先进工程材料的性能要求(IRG2:stimuli-tossigentime-Responsive Living Polymeric材料)融合生存系统特征的软材料。 IRG1着重于具有编程性血浆,催化和结构特性的创新,功能性介质材料的合理设计。正在创建一个计算驱动的框架,以理解,预测和设计如何将形状的纳米组件用作材料构建块。这些模型开发了与中尺度组件相关的桥梁长度和时间尺度。 IRG2将工程生命物质(光合生物体)整合到生物学成分中,这些生物成分对刺激有反应,并具有一般编码的输出,例如化学试剂和聚合物原料。 UCSD MRSEC创建了独特的资源,以使更广泛的材料研究社区受益:介材材料设计设施 - 虚拟,计算设施以及由生物合成实验室和软性特征工具组成的工程生活材料铸造厂。该中心的教育目标包括准备下一代跨学科材料科学家,并增加材料研究的多样性和包容性。材料科学与工程(RIMSE)暑期学校的研究浸入了IRG研究领域的深入培训。与机队科学中心的合作伙伴关系为中心成员提供专业发展,促进了与圣地亚哥潜水员社区的有意义的参与。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点评估来支持的,并被认为是珍贵的支持,并具有更广泛的影响。
项目成果
期刊论文数量(80)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bioconjugation of Active Ingredients to Plant Viral Nanoparticles Is Enhanced by Preincubation with a Pluronic F127 Polymer Scaffold
- DOI:10.1021/acsami.1c13183
- 发表时间:2021-12-10
- 期刊:
- 影响因子:9.5
- 作者:Shin, Matthew D.;Hochberg, Justin D.;Steinmetz, Nicole F.
- 通讯作者:Steinmetz, Nicole F.
Fabrication of an inexpensive injection molding instrument for rapid prototyping of high precision parts
- DOI:10.1016/j.polymer.2022.125521
- 发表时间:2022-11
- 期刊:
- 影响因子:4.6
- 作者:David M. Wirth;Leonard G. McCline;J. Pokorski
- 通讯作者:David M. Wirth;Leonard G. McCline;J. Pokorski
Molecularly Stimuli-Responsive Self-Assembled Peptide Nanoparticles for Targeted Imaging and Therapy
- DOI:10.1021/acsnano.3c01452
- 发表时间:2023-04-20
- 期刊:
- 影响因子:17.1
- 作者:Zhou,Yang;Li,Qianqian;Cai,Hui
- 通讯作者:Cai,Hui
Porous Silicon-Based Nanomedicine for Simultaneous Management of Joint Inflammation and Bone Erosion in Rheumatoid Arthritis
- DOI:10.1021/acsnano.2c04491
- 发表时间:2022-10-10
- 期刊:
- 影响因子:17.1
- 作者:Jeong, Moonkyoung;Jung, Yuna;Park, Ji-Ho
- 通讯作者:Park, Ji-Ho
Effect of variations in manufacturing and material properties on the self-folding behaviors of hydrogel and elastomer bilayer structures
制造和材料性能变化对水凝胶和弹性体双层结构自折叠行为的影响
- DOI:10.1039/d2sm01104b
- 发表时间:2022
- 期刊:
- 影响因子:3.4
- 作者:Zhao, Jiayu;Kazemi, Hesaneh;Kim, H. Alicia;Bae, Jinhye
- 通讯作者:Bae, Jinhye
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Sailor其他文献
Michael Sailor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Sailor', 18)}}的其他基金
Porous Silicon Nanoparticle/Polycaprolactone Composite Nanofibers for Nervous System Repair
用于神经系统修复的多孔硅纳米颗粒/聚己内酯复合纳米纤维
- 批准号:
1603177 - 财政年份:2016
- 资助金额:
$ 1800万 - 项目类别:
Standard Grant
Materials World Network (MWN): Chemistry of Porous Silicon Nanoparticles for Photodynamic Therapy
材料世界网络(MWN):用于光动力疗法的多孔硅纳米粒子的化学
- 批准号:
1210417 - 财政年份:2012
- 资助金额:
$ 1800万 - 项目类别:
Continuing Grant
Materials World Network: "New Functionalized Hybrid Systems for Biosensing and drug Delivery"
材料世界网络:“用于生物传感和药物输送的新型功能化混合系统”
- 批准号:
0806859 - 财政年份:2008
- 资助金额:
$ 1800万 - 项目类别:
Continuing Grant
NSF-Europe Materials Collaboration: New Functionalized Hybrid Systems for Drug Delivery
NSF-欧洲材料合作:用于药物输送的新型功能化混合系统
- 批准号:
0503006 - 财政年份:2005
- 资助金额:
$ 1800万 - 项目类别:
Continuing Grant
Chemistry of Nanostructured Porous Si
纳米结构多孔硅的化学
- 批准号:
0452579 - 财政年份:2005
- 资助金额:
$ 1800万 - 项目类别:
Continuing Grant
Silicate Phosphors from Sol-Gel Prescursors
来自溶胶-凝胶前体的硅酸盐磷光体
- 批准号:
9900034 - 财政年份:1999
- 资助金额:
$ 1800万 - 项目类别:
Continuing Grant
Chemistry of Luminescent Porous Silicon
发光多孔硅的化学
- 批准号:
9700202 - 财政年份:1997
- 资助金额:
$ 1800万 - 项目类别:
Continuing Grant
Chemistry of Luminescent Porous Silicon
发光多孔硅的化学
- 批准号:
9220367 - 财政年份:1993
- 资助金额:
$ 1800万 - 项目类别:
Continuing Grant
相似国自然基金
青藏地区自然圣境生物多样性保护及管理有效性研究
- 批准号:32360332
- 批准年份:2023
- 资助金额:32.00 万元
- 项目类别:地区科学基金项目
孔圣枕中丹调节PDE2及下游cGMP/PKG/p-CREB通路减缓海马神经损伤改善恐应激ADHD大鼠注意力作用机制研究
- 批准号:82305312
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
道教圣境空间原型提取与“洞天福地”景观建筑形态结构性演化机制研究
- 批准号:52278004
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
道教圣境空间原型提取与“洞天福地”景观建筑形态结构性演化机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
维生素D改善骨骼肌萎缩的效应机制及圣愈汤的干预作用研究
- 批准号:82074468
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目