Learning-Based Fault-Tolerant Traffic Management Algorithms for Intelligent Transportation Systems
智能交通系统中基于学习的容错交通管理算法
基本信息
- 批准号:1949710
- 负责人:
- 金额:$ 29.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant will support research on fault-tolerant intelligent transportation systems. Intelligent transportation systems have a strong potential for congestion mitigation and energy savings. However, such systems rely on a large number of sensors and communications devices deployed in complex environments. Therefore, these systems are prone to sensing faults (misreported, corrupted, or missing measurements), which can significantly compromise system efficiency. To address this challenge, this project will develop traffic management algorithms that detect and resolve sensing faults. Based on these algorithms, a paradigm of real-time, online fault-tolerant traffic management will be studied. This project will advance the knowledge about resiliency of intelligent transportation systems and provide ready-to-implement solutions. The solutions have the potential for mitigating the economic and environmental losses caused by sensing faults and improving cyber resilience of the traffic system. The expected results will provide hints on fault-tolerant design of other civil infrastructure systems as well. Graduate and undergraduate students from underrepresented groups will lead the research activities. Transportation agencies will be involved in discussion on concerns for actual deployment.The research activities jointly consider fault detection and resilient control for intelligent transportation systems. The modeling will synthesize physical law-based and learning-based approaches. Consequently, the models can integrate real-time information and adjust themselves to non-stationary environments with minimal human intervention. The objective will be approached via two research and one validation tasks. First, online fault detection and correction algorithms will be developed. These algorithms check consistency between observations from correlated sensors and between the observed data and physical law-based models, which contain prior empirical knowledge of the spatio-temporal correlation of sensor observations. Second, learning-based approaches will be incorporated into classical traffic control methods to design adaptive traffic management algorithms. The approach will provide guaranteed resiliency against sensing faults. Finally, the algorithms will be validated in a realistic micro-simulation testbed of a road network in New York City under a variety of sensing fault scenarios.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔赠款将支持容错智能交通系统的研究。智能交通系统在缓解拥堵和节能方面具有巨大潜力。然而,此类系统依赖于复杂环境中部署的大量传感器和通信设备。因此,这些系统很容易出现检测故障(误报、损坏或丢失测量),这会严重影响系统效率。为了应对这一挑战,该项目将开发检测和解决传感故障的交通管理算法。基于这些算法,将研究实时在线容错流量管理的范例。该项目将增进有关智能交通系统弹性的知识,并提供现成的解决方案。这些解决方案有可能减轻传感故障造成的经济和环境损失,并提高交通系统的网络弹性。预期结果也将为其他民用基础设施系统的容错设计提供提示。来自代表性不足群体的研究生和本科生将领导研究活动。运输机构将参与有关实际部署问题的讨论。研究活动共同考虑智能交通系统的故障检测和弹性控制。该建模将综合基于物理定律和基于学习的方法。因此,这些模型可以集成实时信息,并以最少的人为干预自行调整以适应非静态环境。该目标将通过两项研究和一项验证任务来实现。首先,将开发在线故障检测和纠正算法。这些算法检查相关传感器的观测值之间以及观测数据与基于物理定律的模型之间的一致性,其中包含传感器观测值时空相关性的先验知识。其次,基于学习的方法将被纳入经典交通控制方法中,以设计自适应交通管理算法。该方法将提供针对感知故障的有保证的弹性。最后,这些算法将在纽约市道路网络的真实微观模拟测试台上在各种传感故障场景下进行验证。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持以及更广泛的影响审查标准。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Security Risk Analysis of the Shorter-Queue Routing Policy for Two Symmetric Servers
两台对称服务器短队列路由策略的安全风险分析
- DOI:10.23919/acc45564.2020.9147745
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Tang, Yu;Wen, Yining;Jin, Li
- 通讯作者:Jin, Li
Resilience of Dynamic Routing in the Face of Recurrent and Random Sensing Faults
动态路由面对反复出现和随机的感知故障时的弹性
- DOI:10.23919/acc45564.2020.9147588
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Xie, Qian;Jin, Li
- 通讯作者:Jin, Li
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kaan Ozbay其他文献
Impact of Social Media on Travel Behaviors during the COVID-19 Pandemic: Evidence from New York City
COVID-19 大流行期间社交媒体对旅行行为的影响:来自纽约市的证据
- DOI:
10.1177/03611981211033857 - 发表时间:
2021 - 期刊:
- 影响因子:1.7
- 作者:
Qian Ye;Kaan Ozbay;Fan Zuo;Xiaohong Chen - 通讯作者:
Xiaohong Chen
Demonstration of Participation Networks in Urban Transport Policy of Public and Private Sectors through Social Media: The Case of Bike-Sharing Pricing Strategy in China
通过社交媒体展示公共和私营部门城市交通政策的参与网络:以中国共享单车定价策略为例
- DOI:
10.1155/2021/8881106 - 发表时间:
2021 - 期刊:
- 影响因子:2.3
- 作者:
Qian Ye;Xiaohong Chen;Hua Zhang;Junjie Cai;Kaan Ozbay - 通讯作者:
Kaan Ozbay
Kaan Ozbay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kaan Ozbay', 18)}}的其他基金
Dynamic Route Guidance and Coordinated Traffic Control Workshop
动态路线引导和协调交通控制研讨会
- 批准号:
0951147 - 财政年份:2009
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
CAREER: Feedback Based Robust On-Line Traffic Control for Intelligent Transportation Systems
职业:智能交通系统的基于反馈的鲁棒在线交通控制
- 批准号:
9875296 - 财政年份:1999
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自监督学习的非规则网格混采数据分离与重建方法研究
- 批准号:42304125
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于双极性中间连接层的并列式交流白光有机发光器件研究
- 批准号:62305097
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
“双循环”背景下第三代半导体创新网络的竞合效应:基于边界拓展和跨网联动的考察
- 批准号:72303054
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fault-based Testing of Evolving Real-time Systems
不断发展的实时系统的基于故障的测试
- 批准号:
RGPIN-2020-07248 - 财政年份:2022
- 资助金额:
$ 29.99万 - 项目类别:
Discovery Grants Program - Individual
Hybrid Data-driven Physics-based Modeling for Machine Fault Detection, Diagnosis, and Prediction
用于机器故障检测、诊断和预测的混合数据驱动的基于物理的建模
- 批准号:
RGPIN-2019-03967 - 财政年份:2022
- 资助金额:
$ 29.99万 - 项目类别:
Discovery Grants Program - Individual
Fault Model-Based Testing
基于故障模型的测试
- 批准号:
RGPIN-2017-03900 - 财政年份:2022
- 资助金额:
$ 29.99万 - 项目类别:
Discovery Grants Program - Individual
Fault-based Testing of Evolving Real-time Systems
不断发展的实时系统的基于故障的测试
- 批准号:
RGPIN-2020-07248 - 财政年份:2022
- 资助金额:
$ 29.99万 - 项目类别:
Discovery Grants Program - Individual
Hybrid Data-driven Physics-based Modeling for Machine Fault Detection, Diagnosis, and Prediction
用于机器故障检测、诊断和预测的混合数据驱动的基于物理的建模
- 批准号:
RGPIN-2019-03967 - 财政年份:2022
- 资助金额:
$ 29.99万 - 项目类别:
Discovery Grants Program - Individual