CCSS: Learning-Driven Scheduling and Communications in Edge-Assisted Battery-Free Wireless Sensor Networks
CCSS:边缘辅助无电池无线传感器网络中的学习驱动的调度和通信
基本信息
- 批准号:2011845
- 负责人:
- 金额:$ 38.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The recent significant progresses of information-sensing techniques, wireless communications, and embedded systems have greatly accelerated the generation of sensory data, which provides a nourishing fertile ground for the development of deep learning and machine learning in data-hungry applications. Nevertheless, the inherent limitations of traditional Wireless Sensor Networks (WSNs) including limited lifetime, difficult battery replacement, and centralized network architecture, become an unavoidable obstacle to the wide deployment and adoption of sensory data. Moreover, due to the big volume and high complexity of sensory data, processing sensory data in a centralized manner would increase the consumption of network resources and the risk of privacy leakage. To tackle the aforementioned limitations as well as to satisfy the needs of managing massive sensory data in real applications, developing power-optimized, sustainably-reliable, and efficiently-distributed solutions has become an essential task.This project explores the energy characteristics of battery-free WSNs, capacities of edge-assisted sinks, and advantages of distributed multi-task learning, which will result in the following technical innovations. (1) The seamless integration of battery-free sensors, edge/cloud computing and machine learning can break through technique imprisonments in traditional WSNs, in which new problems are defined and new methodologies are developed. (2) The energy correlation of battery-free sensors in the temporal and spatial domains is exploited to predict sensor’s dynamic sensing ability for scheduling sensing activities, in which the schemes of time-energy-correlated sensing, time-space cooperative data acquisition and energy-accompanied data acquisition will be developed. (3) The interference of battery-free sensors in the temporal, spatial and energy domains is utilized to construct multi-dimensional conflict graphs for interference-free transmission scheduling, in which the algorithms of associating battery-free sensors with edge-assisted sinks and scheduling data collection from sensors to sinks will be designed. (4) The diverse capacities of computation and communication on edge-assisted sinks are employed to schedule learning process so that multiple related tasks can be simultaneously completed in a distributed fashion. (5) The validation is well planned, where an analog simulator and a prototype system will be built to perform the designed simulations and real-data experiments, respectively.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
信息感应技术,无线通信和嵌入式系统的最新重大进展极大地加速了感官数据的产生,这为在数据繁殖应用中开发深度学习和机器学习提供了滋养的基础。然而,传统无线传感器网络(WSN)的继承局限性在内,包括寿命有限,电池更换和集中式网络体系结构,成为了广泛部署和采用感觉数据的不可避免的障碍。此外,由于感觉数据的量很大和高复杂性,以集中式的方式处理感官数据将增加网络资源的消耗和隐私泄漏的风险。 To tackle the approximate limitations as well as to satisfy the needs of managing massive sensory data in real applications, developing power-optimized, sustainably-reliable, and efficiently-distributed solutions has become an essential task.This project explores the energy characteristics of battery-free WSNs, capacity of edge-assisted sinks, and advantages of distributed multi-task learning, which will result in the following technical innovations. (1)无电池传感器,边缘/云计算和机器学习的无缝集成可以破坏传统WSN的技术监禁,其中定义了新问题并开发了新方法。 (2)利用临时和空间结构域中无电池传感器的能量相关性,以预测传感器的动态灵敏度,以安排灵敏度活动,在该活动中,将开发与时间能量相关的传感器,时空合作数据采集和能量ACPANIED数据采集的方案。 (3)在临时,空间和能量域中无电池传感器的干扰用于构建用于无干扰传输计划的多维冲突图,其中将无电池传感器与边缘辅助的水槽和调度数据收集的数据收集的算法相关联。 (4)使用边缘辅助水槽上的计算和通信能力来安排学习过程,以便以分布式方式轻松完成多个相关任务。 (5)验证是精心计划的,将分别建立模拟模拟器和原型系统来执行设计的模拟和真实数据实验。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准来通过评估来诚实地认为通过评估。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards Neural Network-Based Communication System: Attack and Defense
- DOI:10.1109/tdsc.2022.3203965
- 发表时间:2023-07
- 期刊:
- 影响因子:7.3
- 作者:Zuobin Xiong;Zhipeng Cai;Chun-qiang Hu;Daniel Takabi;Wei Li
- 通讯作者:Zuobin Xiong;Zhipeng Cai;Chun-qiang Hu;Daniel Takabi;Wei Li
Privacy Threat and Defense for Federated Learning With Non-i.i.d. Data in AIoT
- DOI:10.1109/tii.2021.3073925
- 发表时间:2022-02-01
- 期刊:
- 影响因子:12.3
- 作者:Xiong, Zuobin;Cai, Zhipeng;Li, Wei
- 通讯作者:Li, Wei
Multi-Source Adversarial Sample Attack on Autonomous Vehicles
- DOI:10.1109/tvt.2021.3061065
- 发表时间:2021-03
- 期刊:
- 影响因子:6.8
- 作者:Zuobin Xiong;Honghui Xu;Wei Li;Zhipeng Cai
- 通讯作者:Zuobin Xiong;Honghui Xu;Wei Li;Zhipeng Cai
Privacy-Preserving Mechanisms for Multi-Label Image Recognition
- DOI:10.1145/3491231
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Honghui Xu;Zhipeng Cai;Wei Li
- 通讯作者:Honghui Xu;Zhipeng Cai;Wei Li
Federated Generative Model on Multi-Source Heterogeneous Data in IoT
- DOI:10.1609/aaai.v37i9.26252
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Zuobin Xiong;Wei Li;Zhipeng Cai
- 通讯作者:Zuobin Xiong;Wei Li;Zhipeng Cai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Li其他文献
Microbial community analysis of simultaneous ammonium removal and Fe3+ reduction at different influent ammonium concentrations
不同进水铵浓度下同时除铵和还原Fe3的微生物群落分析
- DOI:
10.1007/s00449-017-1811-1 - 发表时间:
2017-07 - 期刊:
- 影响因子:3.8
- 作者:
Su Jun Feng;Lian Ting Ting;Huang Ting Lin;Liang Dong Hui;Wei Li;Wang Wen Dong - 通讯作者:
Wang Wen Dong
Real-Time Air-to-Ground Data Communication Technology of Aeroengine Health Management System with Adaptive Rate in the Whole Airspace
全空域速率自适应航空发动机健康管理系统实时空地数据通信技术
- DOI:
10.1155/2021/9912574 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Qiuying Yan;Wei Li;Li Jiacheng;Zhang Jie;Shengyi Liu;Zhe Wang;Liu Tong;Qian Chen;Hanlin Sheng - 通讯作者:
Hanlin Sheng
CFD analysis of flow pattern and power consumption for viscous fluids in in-line high shear mixers
对在线高剪切混合器中粘性流体的流型和功耗进行 CFD 分析
- DOI:
10.1016/j.cherd.2016.10.013 - 发表时间:
2017 - 期刊:
- 影响因子:3.9
- 作者:
Chen Zhang;Junjie Gu;Hongyun Qin;Qin Xu;Wei Li;Xiaoqiang Jia;Jinli Zhang - 通讯作者:
Jinli Zhang
EAKF-Based parameter optimization using a hybrid adaptive method
使用混合自适应方法的基于 EAKF 的参数优化
- DOI:
10.1175/mwr-d-22-0099.1 - 发表时间:
2022 - 期刊:
- 影响因子:3.2
- 作者:
Cao Lige;Xinrong Wu;Guijun Han;Wei Li;Xiaobo Wu;Haowen Wu;Chaoliang Li;Yundong Li;Gongfu Zhou - 通讯作者:
Gongfu Zhou
Microstructure and properties of W–ZrC composites prepared by the displacive compensation of porosity (DCP) method
位移补偿孔隙率(DCP)法制备W-ZrC复合材料的组织与性能
- DOI:
10.1016/j.jallcom.2011.05.105 - 发表时间:
2011-08 - 期刊:
- 影响因子:6.2
- 作者:
Shouming Zhang;Song Wang;Wei Li;Yulin Zhu;Zhaohui Chen - 通讯作者:
Zhaohui Chen
Wei Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Li', 18)}}的其他基金
CAREER: Statistical Power Analysis and Optimal Sample Size Planning for Longitudinal Studies in STEM Education
职业:STEM 教育纵向研究的统计功效分析和最佳样本量规划
- 批准号:
2339353 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Continuing Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343619 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Standard Grant
PFI-TT: A Smart Bipolar Surgical Device for Electrosurgery
PFI-TT:用于电外科的智能双极手术设备
- 批准号:
2329783 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Continuing Grant
Collaborative Research:CISE-MSI:DP:CNS:Enabling On-Demand and Flexible Mobile Edge Computing with Integrated Aerial-Ground Vehicles
合作研究:CISE-MSI:DP:CNS:通过集成空地车辆实现按需且灵活的移动边缘计算
- 批准号:
2318662 - 财政年份:2023
- 资助金额:
$ 38.09万 - 项目类别:
Standard Grant
I-Corps: Smart window that helps to ensure a healthy indoor air quality
I-Corps:智能窗户有助于确保健康的室内空气质量
- 批准号:
2221915 - 财政年份:2022
- 资助金额:
$ 38.09万 - 项目类别:
Standard Grant
NPIF DTP IAA ABC (2020): UBEL
NPIF DTP IAA ABC (2020):UBEL
- 批准号:
ES/V502339/1 - 财政年份:2020
- 资助金额:
$ 38.09万 - 项目类别:
Research Grant
Isolation and Identification of Heterogeneous Circulating Tumor Cells Using a Microchip with Hyperuniform Patterns
使用具有超均匀模式的微芯片分离和鉴定异质循环肿瘤细胞
- 批准号:
1935792 - 财政年份:2020
- 资助金额:
$ 38.09万 - 项目类别:
Standard Grant
The AGEP Data Engineering and Science Alliance Model: Training and Resources to Advance Minority Graduate Students and Postdoctoral Researchers into Faculty Careers
AGEP 数据工程和科学联盟模型:促进少数族裔研究生和博士后研究人员进入教师职业的培训和资源
- 批准号:
1915995 - 财政年份:2019
- 资助金额:
$ 38.09万 - 项目类别:
Continuing Grant
I-Corps: On-line Monitoring of a Tissue Welding Process
I-Corps:组织焊接过程的在线监控
- 批准号:
1904256 - 财政年份:2018
- 资助金额:
$ 38.09万 - 项目类别:
Standard Grant
Intellectual Migration Dynamics Between China and the U.S.
中美之间的智力移民动态
- 批准号:
1660526 - 财政年份:2017
- 资助金额:
$ 38.09万 - 项目类别:
Continuing Grant
相似国自然基金
基于群智能优化和深度学习的泛癌驱动通路识别研究
- 批准号:62366007
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
机理模型与数据混合驱动的空间遥操作学习控制方法研究
- 批准号:62373305
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
数据-知识融合驱动的半导体硅单晶质量监控与批次学习控制方法研究
- 批准号:62303376
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脊椎间盘关节老化的多模态数据与知识双驱动协同学习算法研究
- 批准号:62372358
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向温湿度快速精准控制的溶液除湿空调系统数据驱动学习控制
- 批准号:62303418
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
- 批准号:
2314075 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Continuing Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2414474 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Standard Grant
Revolutionizing Seamless Precipitation Forecast: Machine Learning-Driven Assimilation of Satellite Precipitation Observations in NICAM-LETKF for Powering Global Diurnal and Heavy Rainfall Predictions
彻底改变无缝降水预报:NICAM-LETKF 中机器学习驱动的卫星降水观测同化,为全球昼夜和强降雨预测提供支持
- 批准号:
24K17129 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
語彙学習のための大規模 Data-Driven Learning システム開発
开发大规模数据驱动的词汇学习系统
- 批准号:
23K21732 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Real-time inversion using self-explainable deep learning driven by expert knowledge
使用由专家知识驱动的可自我解释的深度学习进行实时反演
- 批准号:
EP/Z000653/1 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Research Grant