OAC Core: Small: Open-Source Robust 4D Reconstruction Framework for Real-Time Dynamic Human Capture
OAC Core:小型:用于实时动态人体捕捉的开源稳健 4D 重建框架
基本信息
- 批准号:2007661
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The upcoming deployment of 5G technology makes it feasible to communicate with extremely low latency the vast amounts of data needed for Augmented Reality (AR) and Mixed Reality (MR), which enables transformative applications such as 3D tele-immersive (or 3D facetime) communication, mobile AR apps using captured 4D human contents, AI assistants of lifelike and personalized avatars, human-aware robots that can serve or work with humans, tele-rehabilitation to connect physical therapists with wounded patients far from treatment facilities, etc. All these examples of AR and MR applications require the development of real-time 4D (space and time) capture and reconstruction of dynamic scenes involving human bodies, faces, body add-ons (like clothes), and their surrounding environments. Despite prior research on real-time 4D reconstruction, there is still no open-source and robust reconstruction system that can model topological changes of the dynamic scenes and track the moving surfaces with accuracy and robustness. This project is designed to bridge such gaps, to develop an open-source and robust 4D reconstruction framework that can benefit researchers and developers in broader scientific communities as well as industry alliances, including 5G medical standards, AR and MR game engines, lifelike AI assistants, human-aware robotics, tele-rehabilitation, etc. This project also provides curriculum development and educational activities for graduate, undergraduate, and K-12 students through summer camps. The research proposed for this project centers around the elegant modeling of topological changes in dynamic scenes and the robust tracking of moving surfaces, towards the ultimate goal of developing an open-source robust 4D reconstruction framework for real-time capture of dynamic human scenes. To solve the challenges of topological changes, the volumetric fusion framework and its data structures will be fundamentally redesigned, by introducing Non-manifold Volumetric Grids into both Truncated Signed Distance Field (TSDF) and Embedded Deformation Graph (EDG) representations, allowing both the volumetric cells to replicate themselves and the edges to be broken. Such a novel topology-change-aware framework will allow the reconstructed mesh geometry to update its connectivity on-the-fly, along with a flexible deformation graph updating its connectivity between nodes throughout the 4D capture process. To solve the robust surface tracking problem in 4D dynamic human capture, a Parameterized Animatable Volumetric Model (PAVM) is proposed to combine the benefits of both the parametric human body model and the volumetric TSDF. The TSDF volumetric grids are built on top of the parameterized human body surfaces, so that they can be used to represent the add-ons (e.g. clothes) to the human body. The regular volumetric structure of our PAVM makes it easy to integrate into deep neural networks for robust surface tracking, as well as providing semantic modeling capability. The technical feasibility of the 4D reconstruction framework will be validated by the development of a Mobile 3D Facetime testbed, which will allow people in remote places to interact with each other in a natural AR fashion.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
即将部署的 5G 技术使得以极低延迟的方式传输增强现实 (AR) 和混合现实 (MR) 所需的大量数据成为可能,从而实现 3D 远程沉浸式(或 3D 面对面)通信等变革性应用、使用捕获的 4D 人体内容的移动 AR 应用程序、逼真和个性化化身的人工智能助手、可以为人类服务或与人类合作的具有人类意识的机器人、将物理治疗师与他们联系起来的远程康复远离治疗设施的受伤患者等。所有这些 AR 和 MR 应用示例都需要开发实时 4D(空间和时间)捕捉和重建涉及人体、面部、身体附加物(如衣服)的动态场景以及他们周围的环境。尽管之前有关于实时 4D 重建的研究,但仍然没有开源且鲁棒的重建系统可以模拟动态场景的拓扑变化并准确且鲁棒地跟踪运动表面。该项目旨在弥合此类差距,开发一个开源且强大的 4D 重建框架,使更广泛的科学界以及行业联盟的研究人员和开发人员受益,包括 5G 医疗标准、AR 和 MR 游戏引擎、逼真的 AI 助手该项目还通过夏令营为研究生、本科生和 K-12 学生提供课程开发和教育活动。 该项目提出的研究重点是动态场景中拓扑变化的优雅建模和运动表面的鲁棒跟踪,最终目标是开发一个开源的鲁棒 4D 重建框架,用于实时捕捉动态人类场景。为了解决拓扑变化的挑战,体积融合框架及其数据结构将从根本上重新设计,通过将非流形体积网格引入截断符号距离场(TSDF)和嵌入式变形图(EDG)表示,允许体积融合细胞自我复制,边缘被破坏。这种新颖的拓扑变化感知框架将允许重建的网格几何体动态更新其连接性,以及灵活的变形图在整个 4D 捕获过程中更新其节点之间的连接性。为了解决 4D 动态人体捕捉中的鲁棒表面跟踪问题,提出了一种参数化可动画体积模型(PAVM),结合了参数化人体模型和体积 TSDF 的优点。 TSDF体积网格建立在参数化的人体表面之上,因此它们可以用来表示人体的附加物(例如衣服)。我们的 PAVM 的规则体积结构可以轻松集成到深度神经网络中,以实现强大的表面跟踪,并提供语义建模功能。 4D重建框架的技术可行性将通过移动3D Facetime测试平台的开发得到验证,该测试平台将允许偏远地区的人们以自然的AR方式相互交互。该奖项反映了NSF的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GPU-Based Supervoxel Generation With a Novel Anisotropic Metric
- DOI:10.1109/tip.2021.3120878
- 发表时间:2021-10
- 期刊:
- 影响因子:10.6
- 作者:Xiaopan Dong;Zhonggui Chen;Yong-Jin Liu;Junfeng Yao;Xiaohu Guo
- 通讯作者:Xiaopan Dong;Zhonggui Chen;Yong-Jin Liu;Junfeng Yao;Xiaohu Guo
GPU-based supervoxel segmentation for 3D point clouds
- DOI:10.1016/j.cagd.2022.102080
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Xiaopan Dong;Yanyang Xiao;Zhonggui Chen;Junfeng Yao;X. Guo
- 通讯作者:Xiaopan Dong;Yanyang Xiao;Zhonggui Chen;Junfeng Yao;X. Guo
Layered-Garment Net: Generating Multiple Implicit Garment Layers from a Single Image
分层服装网络:从单个图像生成多个隐式服装层
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Aggarwal, Alakh;Wang, Jikai;Hogue, Steven;Ni, Saifeng;Budagavi, Madhukar;Guo, Xiaohu
- 通讯作者:Guo, Xiaohu
IMMAT: Mesh Reconstruction from Single View Images by Medial Axis Transform Prediction
- DOI:10.1016/j.cad.2022.103304
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Jianwei Hu;Gang Chen;Baorong Yang;Ningna Wang;X. Guo;Bin Wang
- 通讯作者:Jianwei Hu;Gang Chen;Baorong Yang;Ningna Wang;X. Guo;Bin Wang
Neighbor Reweighted Local Centroid for Geometric Feature Identification
- DOI:10.1109/tvcg.2021.3124911
- 发表时间:2021-11
- 期刊:
- 影响因子:5.2
- 作者:Tong Liu;Zhenhua Yang;Shaojun Hu;Zhiyi Zhang;Chunxia Xiao;Xiaohu Guo;Long Yang
- 通讯作者:Tong Liu;Zhenhua Yang;Shaojun Hu;Zhiyi Zhang;Chunxia Xiao;Xiaohu Guo;Long Yang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaohu Guo其他文献
Developing Hybrid OpenMP-MPI Parallelism for Fluidity-Next Generation Geophysical Fluid Modelling Technology
开发混合 OpenMP-MPI 并行性以实现流动性 - 下一代地球物理流体建模技术
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Xiaohu Guo;G. Gorman;A. Sunderland;M. Ashworth - 通讯作者:
M. Ashworth
Revisiting the Gender Gap in CEO Compensation: Replication and Extension of Hill, Upadhyay, and Beekun (2015)'s Work on CEO Gender Pay Gap
重新审视首席执行官薪酬中的性别差距:复制和扩展 Hill、Upadhyay 和 Beekun (2015) 关于首席执行官性别薪酬差距的研究
- DOI:
10.1002/smj.2905 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Vishal K. Gupta;Sandra C. Mortal;Xiaohu Guo - 通讯作者:
Xiaohu Guo
DiffTED: One-shot Audio-driven TED Talk Video Generation with Diffusion-based Co-speech Gestures
DiffTED:使用基于扩散的共同语音手势生成一次性音频驱动的 TED 演讲视频
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
S. Hogue;Chenxu Zhang;Hamza Daruger;Yapeng Tian;Xiaohu Guo - 通讯作者:
Xiaohu Guo
Structural and evolutionary insights into FusB and HisA
FusB 和 HisA 的结构和进化见解
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Xiaohu Guo - 通讯作者:
Xiaohu Guo
Boundary-Aware Multidomain Subspace Deformation
边界感知多域子空间变形
- DOI:
10.1109/tvcg.2013.12 - 发表时间:
2013-02 - 期刊:
- 影响因子:5.2
- 作者:
Weiwei Xu;Xiaohu Guo;Kun Zhou;Baining Guo - 通讯作者:
Baining Guo
Xiaohu Guo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaohu Guo', 18)}}的其他基金
Extreme Loading on Floating Offshore Wind Turbines (FOWTs) under Complex Environmental Conditions
复杂环境条件下浮式海上风力发电机 (FOWT) 的极端负载
- 批准号:
EP/T004339/1 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Research Grant
CAREER: Spectral Deformable Models: Theory and Applications
职业:谱变形模型:理论与应用
- 批准号:
1149737 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Physical Simulation of Deformable Models Based on Geometric Mapping
基于几何映射的变形模型物理模拟
- 批准号:
0727098 - 财政年份:2007
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
核受体RORgamma调控肿瘤微生态促进非小细胞肺癌恶性进展的作用机制研究
- 批准号:82373186
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
肾去交感神经术促进下丘脑室旁核小胶质细胞M2型极化减轻心衰损伤的机制研究
- 批准号:82370387
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
- 批准号:82303969
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
前丘脑室旁核小胶质细胞经由TNF-α参与强迫进食行为的作用及机制研究
- 批准号:82301521
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
- 批准号:82304474
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
- 批准号:
2412329 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
OAC Core: SHF: SMALL: ICURE -- In-situ Analytics with Compressed or Summary Representations for Extreme-Scale Architectures
OAC 核心:SHF:SMALL:ICURE——针对超大规模架构的压缩或摘要表示的原位分析
- 批准号:
2333899 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
OAC Core: SHF: SMALL: ICURE -- In-situ Analytics with Compressed or Summary Representations for Extreme-Scale Architectures
OAC 核心:SHF:SMALL:ICURE——针对超大规模架构的压缩或摘要表示的原位分析
- 批准号:
2007775 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CNS core: OAC core: Small: New Techniques for I/O Behavior Modeling and Persistent Storage Device Configuration
合作研究: CNS 核心:OAC 核心:小型:I/O 行为建模和持久存储设备配置新技术
- 批准号:
2008324 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
- 批准号:
2007789 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant