Collaborative Research:CNS Core: Small: Intermittent and Incremental Inference with Statistical Neural Network for Energy-Harvesting Powered Devices
合作研究:CNS 核心:小型:利用统计神经网络对能量收集供电设备进行间歇和增量推理
基本信息
- 批准号:2007274
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The maturation of energy-harvesting (EH) technology and the recent emergence of viable intermittent computing, which stores harvested energy in an energy storage and supports an episode of program execution, creates the opportunity to build sophisticated batteryless computing systems. This project aims to realize artificial intelligence (AI) in such batteryless devices. However, there are two main challenges: 1. most existing Deep Neural Networks (DNNs) are hard to fit in resource-constrained microcontrollers. 2. DNNs usually require multiple execution episodes to obtain one inference result and it may take indefinite amount of time due to the weak and unpredictable harvested power. To address these challenges, this project is developing multi-exit DNNs, which can output incrementally accurate inference results during each execution episode. Three tasks will be carried out to lay the technological foundation for intermittent incremental inference on EH-powered IoT devices. First, novel power trace aware compression, online pruning and adaptation algorithms will be developed to ensure efficient deployment of multi-exit DNNs on intermittently-powered devices. Second, new multi-exit statistical and incremental neural networks (MESI-NN) will be developed to further reduce the latency and improve the accuracy and energy efficiency. Third, new neural architecture search algorithms will be developed to automatically search the best MESI-NN architecture. This project will be evaluated with real system and applications such as image classification, keyword spotting, and activity recognition. Realizing AI in EH-powered batteryless devices can enable persistent, event-driven sensing capabilities in which the main device (e.g. a battery-draining camera) can remain off until awaken by the EH-powered device when it detects events of interest. The societal impact of the proposed research is to significantly extend the lifetime of sensors and devices deployed in remote areas, which will drastically benefit various consumer, business, scientific and national security applications. This project will expose students to related cutting-edge knowledge and hands-on research opportunities and elevate their competence and confidence in facing of today's highly competitive global job market. The education impact of the proposed research includes the integration of various education activities based on the resources available to the two PIs such as DAC System Design Contest; outreach for local K-12 students through Pitt’s Investing Now summer school and ND’s CS curriculum for K-12 students in Indiana; undergraduate research with emphasis on minority participation, and course integration of the research outcomes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
能源收获(EH)技术的成熟以及可行的间歇性计算的最新出现,该计算将收获的能量存储在能量存储中并支持程序执行的一集,创造了建立复杂无电计算系统的机会。该项目旨在在此类无电器设备中实现人工智能(AI)。但是,有两个主要挑战:1。大多数现有的深神经网络(DNN)很难适合资源受限的微控制器。 2。DNN通常需要多次执行发作才能获得一个推理结果,由于弱且不可预测的收获功率,可能需要无限期的时间。为了应对这些挑战,该项目正在开发多EXIT DNN,该DNN可以在每个执行情节中输出准确的推理结果。将执行三个任务,以奠定技术基础,以间歇性地推断EH功率的IoT设备。首先,将开发新颖的Power Trace意识压缩,在线修剪和适应算法,以确保在间歇性动力设备上有效部署多EXIT DNN。其次,将开发新的多EXIT统计和增量神经元网络(MESI-NN),以进一步降低潜伏期并提高准确性和能源效率。第三,将开发新的神经元体系结构搜索算法,以自动搜索最佳的MESI-NN体系结构。该项目将通过实际系统和应用程序进行评估,例如图像分类,关键字发现和活动识别。实现EH供电的无电池设备中的AI可以实现持续的事件驱动的灵敏度功能,其中主设备(例如,电池排水摄像机)可以保持不变,直到当它检测到感兴趣的事件时,直到被EH供电的设备唤醒。拟议的研究的社会影响是显着扩大部署在偏远地区的传感器和设备的寿命,这将极大地使各种消费者,商业,科学和国家安全应用受益。该项目将使学生了解相关的尖端知识和动手研究机会,并提高他们在面对当今竞争激烈的全球就业市场方面的能力和信心。拟议研究的教育影响包括基于两个PI的资源(例如DAC系统设计竞赛)的各种教育活动的整合;通过Pitt的Investing Now Summer School和ND的CS课程为印第安纳州的K-12学生提供宣传;本科研究重点是少数群体的参与以及研究成果的课程整合。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估标准,认为通过评估被认为是珍贵的支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Intermittent Inference with Nonuniformly Compressed Multi-Exit Neural Network for Energy Harvesting Powered Devices
- DOI:10.1109/dac18072.2020.9218526
- 发表时间:2020-04
- 期刊:
- 影响因子:0
- 作者:Yawen Wu;Zhepeng Wang;Zhenge Jia;Yiyu Shi;J. Hu
- 通讯作者:Yawen Wu;Zhepeng Wang;Zhenge Jia;Yiyu Shi;J. Hu
Lightweight Run-Time Working Memory Compression for Deployment of Deep Neural Networks on Resource-Constrained MCUs
- DOI:10.1145/3394885.3439194
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Zhepeng Wang;Yawen Wu;Zhenge Jia;Yiyu Shi;J. Hu
- 通讯作者:Zhepeng Wang;Yawen Wu;Zhenge Jia;Yiyu Shi;J. Hu
Implementation of Multi-Exit Neural-Network Inferences for an Image-Based Sensing System with Energy Harvesting
- DOI:10.3390/jlpea11030034
- 发表时间:2021-09
- 期刊:
- 影响因子:2.1
- 作者:Yuyang Li;Yuxin Gao;Minghe Shao;Joseph T. Tonecha;Yawen Wu;Jingtong Hu;Inhee Lee
- 通讯作者:Yuyang Li;Yuxin Gao;Minghe Shao;Joseph T. Tonecha;Yawen Wu;Jingtong Hu;Inhee Lee
Developing a Miniature Energy-Harvesting-Powered Edge Device with Multi-Exit Neural Network
- DOI:10.1109/iscas51556.2021.9401799
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Yuyang Li;Yawen Wu;Xincheng Zhang;Ehab A. Hamed;Jingtong Hu;Inhee Lee
- 通讯作者:Yuyang Li;Yawen Wu;Xincheng Zhang;Ehab A. Hamed;Jingtong Hu;Inhee Lee
Energy-Aware Adaptive Multi-Exit Neural Network Inference Implementation for a Millimeter-Scale Sensing System
毫米级传感系统的能量感知自适应多出口神经网络推理实现
- DOI:10.1109/tvlsi.2022.3171308
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Li, Yuyang;Wu, Yawen;Zhang, Xincheng;Hu, Jingtong;Lee, Inhee
- 通讯作者:Lee, Inhee
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jingtong Hu其他文献
FlexLevel NAND Flash Storage System Design to Reduce LDPC Latency
FlexLevel NAND 闪存存储系统设计可减少 LDPC 延迟
- DOI:
10.1109/tcad.2016.2619480 - 发表时间:
2017-07 - 期刊:
- 影响因子:2.9
- 作者:
Jie Guo;Wujie Wen;Jingtong Hu;王党辉;Hai Lu;Yiran Chen - 通讯作者:
Yiran Chen
Stack-Size Sensitive On-Chip Memory Backup for Self-Powered Nonvolatile Processors
适用于自供电非易失性处理器的堆栈大小敏感片上内存备份
- DOI:
10.1109/tcad.2017.2666606 - 发表时间:
2017-02 - 期刊:
- 影响因子:2.9
- 作者:
Mengying Zhao;Chenchen Fu;Zewei Li;Qing'an Li;Mimi Xie;Yongpan Liu;Jingtong Hu;Zhiping Jia;Chun Jason Xue - 通讯作者:
Chun Jason Xue
Development of A Real-time POCUS Image Quality Assessment and Acquisition Guidance System
实时 POCUS 图像质量评估和采集引导系统的开发
- DOI:
10.48550/arxiv.2212.08624 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Zhenge Jia;Yiyu Shi;Jingtong Hu;Lei Yang;B. Nti - 通讯作者:
B. Nti
Algorithm-hardware Co-design of Attention Mechanism on FPGA Devices
FPGA器件上注意力机制的算法-硬件协同设计
- DOI:
10.1145/3477002 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Xinyi Zhang;Yawen Wu;Peipei Zhou;Xulong Tang;Jingtong Hu - 通讯作者:
Jingtong Hu
Learning to Learn Personalized Neural Network for Ventricular Arrhythmias Detection on Intracardiac EGMs
学习学习用于心内 EGM 室性心律失常检测的个性化神经网络
- DOI:
10.24963/ijcai.2021/359 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Zhenge Jia;Zhepeng Wang;Feng Hong;Lichuan Ping;Yiyu Shi;Jingtong Hu - 通讯作者:
Jingtong Hu
Jingtong Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jingtong Hu', 18)}}的其他基金
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
- 批准号:
2324937 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Towards Unsupervised Learning on Resource Constrained Edge Devices with Novel Statistical Contrastive Learning Scheme
合作研究:CNS 核心:小型:利用新颖的统计对比学习方案在资源受限的边缘设备上实现无监督学习
- 批准号:
2122320 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core:Small:IMPERIAL: In-Memory Processing Enhanced Racetrack Inspired by Accessing Laterally
协作研究:CNS Core:Small:IMPERIAL:受横向访问启发的内存处理增强赛道
- 批准号:
2133267 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
RAPID:Collaborative:Independent Component Analysis Inspired Statistical Neural Networks for 3D CT Scan Based Edge Screening of COVID-19
RAPID:协作:独立成分分析启发的统计神经网络,用于基于 3D CT 扫描的 COVID-19 边缘筛查
- 批准号:
2027546 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
IRES Track I: International Research Experience for Students on Non-Volatile Processor Based Self-Powered Embedded Systems
IRES Track I:基于非易失性处理器的自供电嵌入式系统学生的国际研究经验
- 批准号:
1827009 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Multi-level Non-volatile FPGA Synthesis to Empower Efficient Self-adaptive System Implementations
SHF:小型:协作研究:多级非易失性 FPGA 综合,实现高效自适应系统
- 批准号:
1820537 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CRII: CSR: Enabling Efficient Non-Volatile Processors on Energy Harvesting Powered Embedded Systems
CRII:CSR:在能量收集供电的嵌入式系统上启用高效的非易失性处理器
- 批准号:
1830891 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Multi-level Non-volatile FPGA Synthesis to Empower Efficient Self-adaptive System Implementations
SHF:小型:协作研究:多级非易失性 FPGA 综合,实现高效自适应系统
- 批准号:
1527506 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CRII: CSR: Enabling Efficient Non-Volatile Processors on Energy Harvesting Powered Embedded Systems
CRII:CSR:在能量收集供电的嵌入式系统上启用高效的非易失性处理器
- 批准号:
1464429 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
IL-17A通过STAT5影响CNS2区域甲基化抑制调节性T细胞功能在银屑病发病中的作用和机制研究
- 批准号:82304006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miR-20a通过调控CD4+T细胞焦亡促进CNS炎性脱髓鞘疾病的发生及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miR-20a通过调控CD4+T细胞焦亡促进CNS炎性脱髓鞘疾病的发生及机制研究
- 批准号:82201491
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
血浆CNS来源外泌体中寡聚磷酸化α-synuclein对PD病程的提示研究
- 批准号:82101506
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于脑微血管内皮细胞模型的毒力岛4在单增李斯特菌CNS炎症中的作用及机制研究
- 批准号:32160834
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant