CAREER: Scalable and reconfigurable time-based circuits and systems for high-resolution large antenna arrays

职业:用于高分辨率大型天线阵列的可扩展和可重构的基于时间的电路和系统

基本信息

  • 批准号:
    1944688
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Extremely large antenna arrays (LAA) comprising hundreds of antenna elements promise to provide unprecedented spatial resolutions that can not only enable many critical infrastructure technologies using millimeter-wave wireless communications but also usher in exciting concepts such as holographic surfaces for multi-user wireless communications, six-dimensional positioning for autonomous vehicles, high-speed communication links for deep-space planetary explorations, and automobile radars for detecting multiple objects. However, the signal processing at these large-scale arrays bring challenges of higher energy consumption and less accurate localization. Conventional phased array transceivers, which interface with the real-world signals, face several impediments in low-latency tracking and scaling due to highly complex signal processing and imperfect spatial filtering. Such imperfections result in drastic performance degradation endangering evolution of emerging wireless technologies. To overcome these fundamental challenges, this research seeks to use discrete-time delay-compensating techniques incorporating scalable time-based circuits and systems so that future LAAs can estimate direction-of-arrival precisely, cancel multiple interferences efficiently, and optimize the physical front-end transceivers autonomously. This research effort is integrated with the principal investigator's educational career goal of enhancing high-school and undergraduate learning experience by increasing education, awareness and preparation of the students through active collaborations with national labs and industry. The objective of this research is to transform multi-antenna phased arrays using discrete-time delay-compensating time-based circuits and systems with wide delay ranges and high precision for both energy-efficient spatial signal processing and low-latency beam acquisition. Several design techniques with non-uniform-sampling-based scalable discrete-time data converters will form the basis of delay-compensating spatial signal processor capable of handling gigahertz signal bandwidth. First, a discrete-time delay-compensating spatial signal processor will be demonstrated with variable gain and delay ranges for near-field and far-field LAAs. Second, the delay-compensating technique will be instituted in linear time-based matrix-multiplying data converters optimized using artificial-intelligence based self-initializing bias optimization techniques to demonstrate faster and energy-efficient convergence. Third, scalable system-level models for spatial arrays incorporating wide scan angles, high-speed signal bandwidth, large number of antenna elements, low-latency direction-of-arrival, and segmentation in true-time-delay arrays will be developed to study their effects on both spectral efficiency and energy efficiency for future LAAs. Through these comprehensive studies, the project will establish the advantages of discrete-time delay-compensating in wideband LAAs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由数百个天线元件组成的超大天线阵列 (LAA) 有望提供前所未有的空间分辨率,不仅可以使用毫米波无线通信实现许多关键基础设施技术,还可以引入令人兴奋的概念,例如用于多用户无线通信的全息表面、自动驾驶汽车的六维定位、深空行星探索的高速通信链路以及检测多个物体的汽车雷达。然而,这些大规模阵列的信号处理带来了能耗较高和定位精度较低的挑战。由于高度复杂的信号处理和不完善的空间滤波,与现实世界信号交互的传统相控阵收发器在低延迟跟踪和缩放方面面临着一些障碍。这些缺陷会导致性能急剧下降,危及新兴无线技术的发展。为了克服这些基本挑战,本研究寻求使用离散时间延迟补偿技术,结合可扩展的基于时间的电路和系统,以便未来的 LAA 能够精确估计到达方向,有效消除多重干扰,并优化物理前端。自主地结束收发器。这项研究工作与首席研究员的教育职业目标相结合,即通过与国家实验室和行业的积极合作,提高学生的教育、意识和准备,从而增强高中和本科生的学习体验。本研究的目标是使用具有宽延迟范围和高精度的离散时间延迟补偿基于时间的电路和系统来改造多天线相控阵,以实现节能的空间信号处理和低延迟波束采集。几种基于非均匀采样的可扩展离散时间数据转换器的设计技术将构成能够处理千兆赫信号带宽的延迟补偿空间信号处理器的基础。首先,将演示离散时间延迟补偿空间信号处理器,其具有针对近场和远场 LAA 的可变增益和延迟范围。其次,延迟补偿技术将在基于线性时间的矩阵乘法数据转换器中采用,并使用基于人工智能的自初始化偏差优化技术进行优化,以展示更快、更节能的收敛。第三,将开发包含宽扫描角度、高速信号带宽、大量天线元件、低延迟到达方向和实时延迟阵列分段的空间阵列的可扩展系统级模型来研究它们对未来 LAA 的频谱效率和能源效率的影响。通过这些综合研究,该项目将确立宽带 LAA 中离散时间延迟补偿的优势。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design of Millimeter-Wave Single-Shot Beam Training for True-Time-Delay Array
真时延阵列毫米波单发波束训练设计
Multi-Mode Spatial Signal Processor With Rainbow-Like Fast Beam Training and Wideband Communications Using True-Time-Delay Arrays
多模式空间信号处理器,具有彩虹般的快速波束训练和使用真时延迟阵列的宽带通信
  • DOI:
    10.1109/jssc.2022.3178798
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Lin, Chung;Puglisi, Chase;Boljanovic, Veljko;Yan, Han;Ghaderi, Erfan;Gaddis, Jayce;Xu, Qiuyan;Poolakkal, Sreeni;Cabric, Danijela;Gupta, Subhanshu
  • 通讯作者:
    Gupta, Subhanshu
10.8 A 4-Element 500MHz-Modulated-BW 40mW 6b 1GS/s Analog-Time-to-Digital-Converter-Enabled Spatial Signal Processor in 65nm CMOS
10.8 采用 65nm CMOS 封装、支持模拟时间数字转换器的 4 元件 500MHz 调制带宽 40mW 6b 1GS/s 空间信号处理器
Wideband Beamforming with Rainbow Beam Training using Reconfigurable True-Time-Delay Arrays for Millimeter-Wave Wireless
使用用于毫米波无线的可重新配置的真实时延阵列进行彩虹波束训练的宽带波束形成
A 4-Element 800MHz-BW 29mW True-Time-Delay Spatial Signal Processor Enabling Fast Beam-Training with Data Communications
4 元件 800MHz-BW 29mW 实时延迟空间信号处理器,通过数据通信实现快速波束训练
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Subhanshu Gupta其他文献

True-Time-Delay Arrays for Fast Beam Training in Wideband Millimeter-Wave Systems
用于宽带毫米波系统中快速波束训练的真时延阵列
  • DOI:
  • 发表时间:
    2020-07-17
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Veljko Boljanovic;Han Yan;Chung;Soumen Mohapatra;D. Heo;Subhanshu Gupta;D. Cabric
  • 通讯作者:
    D. Cabric
Frequency-Channelized Mismatch-Shaped Quadrature Data Converters for Carrier Aggregation in MU-MIMO LTE-A
用于 MU-MIMO LTE-A 中载波聚合的频率通道失配形状正交数据转换器
A highly linear 4GS/s uncalibrated voltage-to-time converter with wide input range
具有宽输入范围的高度线性 4GS/s 未校准电压时间转换器
A Review of Phased-Array Receiver Architectures for 5G Communications
5G 通信相控阵接收器架构回顾
Experimental Testbed for Ultrasonic Wireless Power Transfer and Backscattering Based Localization for Future Implantable Devices
未来可植入设备的超声波无线功率传输和基于反向散射的定位实验测试台

Subhanshu Gupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Subhanshu Gupta', 18)}}的其他基金

Collaborative Research: CNS core: Medium: True-Time-Delay based MIMO System and Testbed for Low-Latency Wideband Beam and Interference Management in Millimeter Wave Networks
合作研究: CNS 核心:中:基于真实时延的 MIMO 系统和毫米波网络中低延迟宽带波束和干扰管理的测试台
  • 批准号:
    1955306
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: CubeSat Ideas Lab: VIrtual Super-resolution Optics with Reconfigurable Swarms (VISORS)
合作研究:CubeSat Ideas Lab:具有可重构群的虚拟超分辨率光学器件 (VISORS)
  • 批准号:
    1936521
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
  • 批准号:
    62371039
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
具备可扩展性与隐私保障的数据驱动分布式优化方法及其在需求响应中的应用
  • 批准号:
    72301008
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于无监督持续学习的单细胞多组学数据可扩展整合方法研究
  • 批准号:
    62303488
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
自动驾驶场景下基于强化学习的可扩展多智能体协同策略研究
  • 批准号:
    62306062
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
区块链系统中面向业务优化的混合状态验证机制的可扩展性研究
  • 批准号:
    62302202
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Reconfigurable Infrastructure and Scalable Execution for Advanced Air Mobility (RISE-AAM)
职业:先进空中机动性的可重构基础设施和可扩展执行(RISE-AAM)
  • 批准号:
    2237215
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
An Energy-Efficient, CMOS-based, and Scalable Mixed-Signal DNN System with Reconfigurable Crossbars
具有可重新配置交叉开关的节能、基于 CMOS 的可扩展混合信号 DNN 系统
  • 批准号:
    2221753
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Photo-patterning of Two-Dimensional Nanomaterials for Reconfigurable Microelectronics
合作研究:用于可重构微电子学的二维纳米材料的可扩展光图案化
  • 批准号:
    1930769
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Photo-patterning of Two-Dimensional Nanomaterials for Reconfigurable Microelectronics
合作研究:用于可重构微电子学的二维纳米材料的可扩展光图案化
  • 批准号:
    1930809
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CSR:NeTS:Small:GigaPaxos: System Support for Group-Scalable, Reconfigurable Replica Coordination
CSR:NeTS:Small:GigaPaxos:对组可扩展、可重新配置副本协调的系统支持
  • 批准号:
    1717132
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了