III: Small: Collaborative Research: Demystifying Deep Learning on Graphs: From Basic Operations to Applications

III:小:协作研究:揭秘图深度学习:从基本操作到应用

基本信息

  • 批准号:
    2006861
  • 负责人:
  • 金额:
    $ 23.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Graphs are ubiquitous in myriad high-impact domains, e.g., social media platforms, collaboration networks, biological networks, and critical infrastructure systems. Recent years have witnessed a surge of research interests in developing deep learning algorithms (in particular graph convolution networks - GCNs) for graph data. By stacking multiple layers of neural network primitives, GCNs learn high-level feature representations and address graph-related applications in an end-to-end manner, achieving superior performance in various learning tasks. In particular, the graph convolution and graph pooling operations are considered as fundamental building blocks of GCNs. However, a vast majority of existing graph convolution and graph pooling operations are simple extensions of the corresponding operations from convolution neural networks. Therefore, they are insufficient to tackle the fundamental challenges brought by real-world graphs and advance high-impact graph mining applications. The primary goal of this project is to develop novel operations to improve the essential building blocks of deep learning algorithms for graphs, propelling the state-of-the-art graph mining and deep learning research to a new frontier and advancing graph-related applications from different disciplines.This project proposes a class of novel graph convolution and pooling operations that can faithfully characterize the properties of real-world graphs from different perspectives, and build more tailored and powerful deep architectures in handling high-impact graph applications from different domains. First, it develops a family of trainable graph convolution operations that can integrate properties of real-world graphs from different aspects at the feature-level, edge-level, and node-level. Second, it investigates the problem of graph pooling to support graph-level analytical tasks and develops novel topology-aware graph pooling operations based on node sampling and node clustering. Third, it assesses the impact of proposed graph convolution and graph pooling operations by building more powerful and customized deep learning architectures for various common graph applications, such as graph anomaly detection and graph alignment. This project will be tightly integrated with newly developed undergraduate and graduate courses. The results and findings of this project will be disseminated through public datasets, open-source software repositories, journal and conference publications, special-purpose workshops or tutorials, as well as education and outreach activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图在无数高影响力领域中无处不在,例如社交媒体平台、协作网络、生物网络和关键基础设施系统。近年来,人们对开发图数据深度学习算法(特别是图卷积网络 - GCN)的研究兴趣激增。通过堆叠多层神经网络原语,GCN 学习高级特征表示并以端到端的方式处理与图相关的应用,从而在各种学习任务中实现卓越的性能。特别是,图卷积和图池化操作被认为是 GCN 的基本构建块。然而,绝大多数现有的图卷积和图池化操作都是卷积神经网络相应操作的简单扩展。因此,它们不足以解决现实世界图带来的根本挑战并推进高影响力的图挖掘应用程序。该项目的主要目标是开发新颖的操作来改进图深度学习算法的基本构建模块,将最先进的图挖掘和深度学习研究推向新的前沿,并从该项目提出了一类新颖的图卷积和池化操作,可以从不同的角度忠实地表征现实世界图的属性,并构建更定制和更强大的深层架构来处理来自不同领域的高影响力的图应用。首先,它开发了一系列可训练的图卷积运算,可以从特征级、边级和节点级的不同方面集成现实世界图的属性。其次,它研究了图池化问题以支持图级分析任务,并开发了基于节点采样和节点聚类的新颖的拓扑感知图池化操作。第三,它通过为各种常见的图应用(例如图异常检测和图对齐)构建更强大和定制的深度学习架构来评估所提出的图卷积和图池操作的影响。该项目将与新开发的本科生和研究生课程紧密结合。该项目的成果和发现将通过公共数据集、开源软件存储库、期刊和会议出版物、特殊用途研讨会或教程以及教育和外展活动进行传播。该奖项反映了 NSF 的法定使命,并被视为值得通过使用基金会的智力优点和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Topology-Aware Graph Pooling Networks
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences
  • DOI:
    10.1137/1.9781611977172.7
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Meng Liu;Shuiwang Ji
  • 通讯作者:
    Meng Liu;Shuiwang Ji
Efficient and Equivariant Graph Networks for Predicting Quantum Hamiltonian
  • DOI:
    10.48550/arxiv.2306.04922
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haiyang Yu;Zhao Xu;X. Qian;Xiaoning Qian;Shuiwang Ji
  • 通讯作者:
    Haiyang Yu;Zhao Xu;X. Qian;Xiaoning Qian;Shuiwang Ji
Learning Fair Graph Representations via Automated Data Augmentations
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongyi Ling;Zhimeng Jiang;Youzhi Luo;S. Ji;Na Zou
  • 通讯作者:
    Hongyi Ling;Zhimeng Jiang;Youzhi Luo;S. Ji;Na Zou
Group Equivariant Fourier Neural Operators for Partial Differential Equations
  • DOI:
    10.48550/arxiv.2306.05697
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jacob Helwig;Xuan Zhang;Cong Fu;Jerry Kurtin;Stephan Wojtowytsch;Shuiwang Ji
  • 通讯作者:
    Jacob Helwig;Xuan Zhang;Cong Fu;Jerry Kurtin;Stephan Wojtowytsch;Shuiwang Ji
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shuiwang Ji其他文献

A Mathematical View of Attention Models in Deep Learning
深度学习中注意力模型的数学观点
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuiwang Ji;Yaochen Xie
  • 通讯作者:
    Yaochen Xie
An Interpretable Neural Model with Interactive Stepwise Influence
具有交互式逐步影响的可解释神经模型
  • DOI:
    10.1007/978-3-030-16142-2_41
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Yin Zhang;Ninghao Liu;Shuiwang Ji;James Caverlee;Xia Hu
  • 通讯作者:
    Xia Hu
Discriminant Analysis for Dimensionality Reduction: An Overview of Recent Developments
降维判别分析:近期发展概述
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jieping Ye;Shuiwang Ji
  • 通讯作者:
    Shuiwang Ji
Semi-Supervised Learning for High-Fidelity Fluid Flow Reconstruction
高保真流体流动重建的半监督学习
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cong Fu;Jacob Helwig;Shuiwang Ji
  • 通讯作者:
    Shuiwang Ji
Eliminating Position Bias of Language Models: A Mechanistic Approach
消除语言模型的位置偏差:一种机械方法
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ziqi Wang;Hanlin Zhang;Xiner Li;Kuan;Chi Han;Shuiwang Ji;S. Kakade;Hao Peng;Heng Ji
  • 通讯作者:
    Heng Ji

Shuiwang Ji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shuiwang Ji', 18)}}的其他基金

III: Small: 3D Graph Neural Networks: Completeness, Efficiency, and Applications
III:小:3D 图神经网络:完整性、效率和应用
  • 批准号:
    2243850
  • 财政年份:
    2023
  • 资助金额:
    $ 23.13万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
  • 批准号:
    2028361
  • 财政年份:
    2020
  • 资助金额:
    $ 23.13万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Towards Scalable and Interpretable Graph Neural Networks
III:媒介:协作研究:迈向可扩展和可解释的图神经网络
  • 批准号:
    1955189
  • 财政年份:
    2020
  • 资助金额:
    $ 23.13万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Structured Methods for Multi-Task Learning
III:小:协作研究:多任务学习的结构化方法
  • 批准号:
    1908166
  • 财政年份:
    2018
  • 资助金额:
    $ 23.13万
  • 项目类别:
    Standard Grant
III: Small: Deep Learning for Gene Expression Pattern Image Analysis
III:小:深度学习用于基因表达模式图像分析
  • 批准号:
    1908220
  • 财政年份:
    2018
  • 资助金额:
    $ 23.13万
  • 项目类别:
    Standard Grant
CAREER: Towards the Next Generation of Data-Driven
职业:迈向下一代数据驱动
  • 批准号:
    1922969
  • 财政年份:
    2018
  • 资助金额:
    $ 23.13万
  • 项目类别:
    Continuing Grant
BIGDATA: Collaborative Research: F: Efficient and Exact Methods for Big Data Reduction
BIGDATA:协作研究:F:大数据缩减的高效且精确的方法
  • 批准号:
    1908198
  • 财政年份:
    2018
  • 资助金额:
    $ 23.13万
  • 项目类别:
    Standard Grant
III: Small: Deep Learning for Gene Expression Pattern Image Analysis
III:小:深度学习用于基因表达模式图像分析
  • 批准号:
    1811675
  • 财政年份:
    2018
  • 资助金额:
    $ 23.13万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
  • 批准号:
    1661289
  • 财政年份:
    2017
  • 资助金额:
    $ 23.13万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Structured Methods for Multi-Task Learning
III:小:协作研究:多任务学习的结构化方法
  • 批准号:
    1615035
  • 财政年份:
    2016
  • 资助金额:
    $ 23.13万
  • 项目类别:
    Standard Grant

相似国自然基金

单细胞分辨率下的石杉碱甲介导小胶质细胞极化表型抗缺血性脑卒中的机制研究
  • 批准号:
    82304883
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
  • 批准号:
    32372613
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
诊疗一体化PS-Hc@MB协同训练介导脑小血管病康复的作用及机制研究
  • 批准号:
    82372561
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
非小细胞肺癌MECOM/HBB通路介导血红素代谢异常并抑制肿瘤起始细胞铁死亡的机制研究
  • 批准号:
    82373082
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FATP2/HILPDA/SLC7A11轴介导肿瘤相关中性粒细胞脂代谢重编程影响非小细胞肺癌放疗免疫的作用和机制研究
  • 批准号:
    82373304
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322973
  • 财政年份:
    2024
  • 资助金额:
    $ 23.13万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322974
  • 财政年份:
    2024
  • 资助金额:
    $ 23.13万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
  • 批准号:
    2336769
  • 财政年份:
    2024
  • 资助金额:
    $ 23.13万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
  • 批准号:
    2336768
  • 财政年份:
    2024
  • 资助金额:
    $ 23.13万
  • 项目类别:
    Standard Grant
III: Small: Multiple Device Collaborative Learning in Real Heterogeneous and Dynamic Environments
III:小:真实异构动态环境中的多设备协作学习
  • 批准号:
    2311990
  • 财政年份:
    2023
  • 资助金额:
    $ 23.13万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了