Investigating Wind Farm Wake Interactions by Leveraging a Viscous Vortex Particle Method
利用粘性涡旋粒子法研究风电场尾流相互作用
基本信息
- 批准号:2006219
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One major impediment in the wind energy field is managing the power losses (10-30%) that occur in a wind farm because of wake interference. Mitigating these losses by even a few percent would have a major impact on our ability to abundantly produce clean energy and reduce greenhouse gas emissions. Reducing these losses requires untangling the complexities of wind farm flow behavior. Wind farms typically consist of 10s or 100s of turbines, with rotating blades creating wakes that mix and interact, affected by terrain and atmospheric behavior across many scales. Vortex particle methods have been demonstrated to be an effective approach for simulating wake-dominant flows in adjacent fields (e.g., rotorcraft) and can potentially offer insight into wind farm flow fields at much faster computational speeds compared to traditional methods. However, efficiently propagating vortex particles around viscous walls (e.g., terrain, other turbines) remains a challenge that is a focal point of this proposal. The fundamental methodology could potentially be useful in other wake-dominant flow fields like simulating aircraft, underwater vehicles, the motion of water or smoke around other objects, etc. The project will also facilitate the development of a learn-by-doing platform to introduce students to computational aerodynamics—like a Codecademy® for aerodynamics.The viscous vortex particle method is based on solving the vorticity form of the Navier-Stokes equations, and, using a meshless Lagrangian scheme, which can accurately preserve vortical structures and improve computational efficiency by placing particles only where needed. The first objective is to extend the methodology to allow for efficient propagation of particles around viscous walls. The second objective is to leverage the speed of the proposed methodology to create a new analytical wake model appropriate for mixed height wind farms. Recent work has demonstrated that mixed height wind farms have the potential for a significant increase in power production. Existing analytical wake models are often not appropriate for these scenarios as they do not include important coupling effects such as mixing and entrainment. So, the third objective is to conduct broad sensitivity studies to identify the most relevant parameters and strategies to mitigate the negative effects of partial waking. Wind turbines often encounter incoming wakes over just a portion of the rotor disk causing asymmetric loading and potentially increased fatigue damage and noise. The proposed methodology provides a good balance between capturing the fidelity in flow physics with prediction speed to enable a robust exploration of wake interactions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
风能场中的一个主要障碍是管理由于唤醒干扰而在风电场发生的功率损失(10-30%)。减轻这些损失甚至百分之几,将对我们绝对产生清洁能源和减少温室气体排放的能力产生重大影响。减少这些损失需要弄清风电流流动行为的复杂性。风电场通常由10秒或100台涡轮机组成,旋转叶片会产生混合和相互作用的唤醒,并受许多尺度上的地形和大气行为的影响。涡流粒子方法已被证明是一种有效的方法,用于模拟相邻场中的唤醒优势流动(例如旋翼法船),并且与传统方法相比,可以以更快的计算速度以更快的计算速度提供对风电场流动场的见解。但是,有效地在粘性壁(例如,地形,其他涡轮机)周围有效地传播涡流颗粒仍然是该建议的焦点。基本方法论可能有可能在其他唤醒的流动场中有用并且,使用无网状的拉格朗日方案,该方案可以通过仅在需要的地方放置颗粒来准确地保留涡流结构并提高计算效率。第一个目标是扩展方法,以使粘膜周围的颗粒有效地传播。第二个目标是利用所提出的方法的速度创建适合混合高度风电场的新分析唤醒模型。最近的工作表明,混合高度风电场有可能大幅增加发电。现有的分析唤醒模型通常不适合这些情况,因为它们不包含重要的耦合效果,例如混合和入口。因此,第三个目标是进行广泛的灵敏度研究,以确定最相关的参数和策略,以减轻部分唤醒的负面影响。风力涡轮机经常在转子磁盘的一部分上遇到传入的唤醒,从而导致不对称的负载,并可能增加疲劳损伤和噪音。拟议的方法在捕获流动物理学的忠诚度以预测速度以实现对尾流相互作用的良好探索之间提供了良好的平衡。该奖项反映了NSF的法定任务,并通过使用该基金会的知识分子的智力优点和更广泛的影响来评估NSF的法定任务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Ning其他文献
A simple solution method for the blade element momentum equations with guaranteed convergence
保证收敛的叶片单元动量方程的简单求解方法
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Andrew Ning - 通讯作者:
Andrew Ning
BYU ScholarsArchive BYU ScholarsArchive Universal Airfoil Parametrization Using B-Splines Universal Airfoil Parametrization Using B-Splines
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Andrew Ning - 通讯作者:
Andrew Ning
Geometrically exact beam theory for gradient-based optimization
用于基于梯度的优化的几何精确梁理论
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Taylor McDonnell;Andrew Ning - 通讯作者:
Andrew Ning
Meshless Large-Eddy Simulation of Propeller–Wing Interactions with Reformulated Vortex Particle Method
采用重构涡粒子法的螺旋桨-机翼相互作用的无网格大涡模拟
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.2
- 作者:
Eduardo J. Álvarez;Andrew Ning - 通讯作者:
Andrew Ning
Understanding the Benefits and Limitations of Increasing Maximum Rotor Tip Speed for Utility-Scale Wind Turbines
了解提高公用事业规模风力涡轮机最大转子叶尖速度的优点和局限性
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Andrew Ning;K. Dykes - 通讯作者:
K. Dykes
Andrew Ning的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Ning', 18)}}的其他基金
CyberSEES: Type 1: Collaborative Research: Large-Scale, Integrated, and Robust Wind Farm Optimization Enabled by Coupled Analytic Gradients
CyberSEES:类型 1:协作研究:耦合分析梯度支持的大规模、集成和鲁棒的风电场优化
- 批准号:
1539384 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
面向安全稳定生产的风电智能预测预警机制研究
- 批准号:62366039
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于ZephIR实测风况的动态风载加速叶片疲劳损伤的作用机理研究
- 批准号:52366017
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
川芎“一体多用”:基于活性标签化特征分子网络的川芎茎叶“主风眩”新药源发现
- 批准号:82373837
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
季节性风况下沙丘外部形态和内部层理演化机制研究
- 批准号:42371007
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
全风积沙高性能混凝土超早龄期非均相湿热传输机理与收缩开裂时变行为研究
- 批准号:52378430
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CAP: AI-Assisted Supervisory Control of Wind Farm Connection to the Grid for Stability Monitoring
CAP:人工智能辅助风电场并网监控以进行稳定性监测
- 批准号:
2334256 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Harnessing the Power of Wind: Revolutionising Wind Farm Optimisation
利用风能:彻底改变风电场优化
- 批准号:
DP240101820 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Discovery Projects
Smart, Aware, Integrated Wind Farm Control Interacting with Digital Twins (ICONIC)
与数字孪生交互的智能、感知、集成风电场控制 (ICONIC)
- 批准号:
10095874 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
EU-Funded
Tackling the global blockage problem in a wind-farm due to interactions between turbulent wakes
解决风电场由于湍流尾流之间的相互作用而导致的全局堵塞问题
- 批准号:
2895226 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
Fire-Retardant Composite Resins for Bushfire-Safe Wind Farm Infrastructures
用于丛林火灾安全风电场基础设施的阻燃复合树脂
- 批准号:
LP220100278 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Linkage Projects