Investigating Wind Farm Wake Interactions by Leveraging a Viscous Vortex Particle Method

利用粘性涡旋粒子法研究风电场尾流相互作用

基本信息

  • 批准号:
    2006219
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

One major impediment in the wind energy field is managing the power losses (10-30%) that occur in a wind farm because of wake interference. Mitigating these losses by even a few percent would have a major impact on our ability to abundantly produce clean energy and reduce greenhouse gas emissions. Reducing these losses requires untangling the complexities of wind farm flow behavior. Wind farms typically consist of 10s or 100s of turbines, with rotating blades creating wakes that mix and interact, affected by terrain and atmospheric behavior across many scales. Vortex particle methods have been demonstrated to be an effective approach for simulating wake-dominant flows in adjacent fields (e.g., rotorcraft) and can potentially offer insight into wind farm flow fields at much faster computational speeds compared to traditional methods. However, efficiently propagating vortex particles around viscous walls (e.g., terrain, other turbines) remains a challenge that is a focal point of this proposal. The fundamental methodology could potentially be useful in other wake-dominant flow fields like simulating aircraft, underwater vehicles, the motion of water or smoke around other objects, etc. The project will also facilitate the development of a learn-by-doing platform to introduce students to computational aerodynamics—like a Codecademy® for aerodynamics.The viscous vortex particle method is based on solving the vorticity form of the Navier-Stokes equations, and, using a meshless Lagrangian scheme, which can accurately preserve vortical structures and improve computational efficiency by placing particles only where needed. The first objective is to extend the methodology to allow for efficient propagation of particles around viscous walls. The second objective is to leverage the speed of the proposed methodology to create a new analytical wake model appropriate for mixed height wind farms. Recent work has demonstrated that mixed height wind farms have the potential for a significant increase in power production. Existing analytical wake models are often not appropriate for these scenarios as they do not include important coupling effects such as mixing and entrainment. So, the third objective is to conduct broad sensitivity studies to identify the most relevant parameters and strategies to mitigate the negative effects of partial waking. Wind turbines often encounter incoming wakes over just a portion of the rotor disk causing asymmetric loading and potentially increased fatigue damage and noise. The proposed methodology provides a good balance between capturing the fidelity in flow physics with prediction speed to enable a robust exploration of wake interactions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
风能领域的一个主要障碍是管理风电场因尾流干扰而产生的功率损失(10-30%),即使将这些损失减少几个百分点,也会对我们大量生产清洁能源的能力产生重大影响。减少这些损失需要解决风电场流动行为的复杂性风电场通常由数十或数百个涡轮机组成,旋转叶片产生混合和相互作用的尾流,受地形影响。涡粒子方法已被证明是模拟邻近场(例如旋翼机)中尾流主导流的有效方法,并且与传统方法相比,可以以更快的计算速度深入了解风电场流场。然而,在粘性壁(例如地形、其他涡轮机)周围有效传播涡流粒子仍然是该提案的焦点,其基本方法可能在其他尾流主导流场中有用。模拟飞机、水下航行器、水或烟雾在其他物体周围的运动等。该项目还将促进边做边学平台的开发,向学生介绍计算空气动力学,例如空气动力学的 Codecademy®。粒子法基于求解纳维-斯托克斯方程的涡量形式,并采用无网格拉格朗日方案,通过仅将粒子放置在以下位置,可以准确地保留涡结构并提高计算效率第一个目标是扩展该方法,以允许粒子在粘性壁周围有效传播。最近的工作是利用所提出的方法的速度来创建适合混合高度风电场的新分析尾流模型。证明了混合高度风电场具有显着增加发电量的潜力,现有的分析尾流模型通常不适合这些场景,因为它们不包括混合和夹带等重要的耦合效应。广泛的敏感性研究以确定最相关的参数风力涡轮机经常会在转子盘的一部分上遇到传入的尾流,从而导致不对称负载并可能增加疲劳损坏和噪声。所提出的方法在捕捉流动物理的保真度之间提供了良好的平衡。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Ning其他文献

A simple solution method for the blade element momentum equations with guaranteed convergence
保证收敛的叶片单元动量方程的简单求解方法
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Ning
  • 通讯作者:
    Andrew Ning
BYU ScholarsArchive BYU ScholarsArchive Universal Airfoil Parametrization Using B-Splines Universal Airfoil Parametrization Using B-Splines
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Ning
  • 通讯作者:
    Andrew Ning
Geometrically exact beam theory for gradient-based optimization
用于基于梯度的优化的几何精确梁理论
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Taylor McDonnell;Andrew Ning
  • 通讯作者:
    Andrew Ning
Meshless Large-Eddy Simulation of Propeller–Wing Interactions with Reformulated Vortex Particle Method
采用重构涡粒子法的螺旋桨-机翼相互作用的无网格大涡模拟
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Eduardo J. Álvarez;Andrew Ning
  • 通讯作者:
    Andrew Ning
Understanding the Benefits and Limitations of Increasing Maximum Rotor Tip Speed for Utility-Scale Wind Turbines
了解提高公用事业规模风力涡轮机最大转子叶尖速度的优点和局限性
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Ning;K. Dykes
  • 通讯作者:
    K. Dykes

Andrew Ning的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Ning', 18)}}的其他基金

CyberSEES: Type 1: Collaborative Research: Large-Scale, Integrated, and Robust Wind Farm Optimization Enabled by Coupled Analytic Gradients
Cyber​​SEES:类型 1:协作研究:耦合分析梯度支持的大规模、集成和鲁棒的风电场优化
  • 批准号:
    1539384
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

基于“肠-肾”轴理论阐释护肾痛风泰调控ABCG2降尿酸的机制
  • 批准号:
    82305104
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
季节性风况下沙丘外部形态和内部层理演化机制研究
  • 批准号:
    42371007
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
基于连续尺度涡流合成法的非平稳风场大涡模拟研究
  • 批准号:
    52378500
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
多动态交互下含风电电力系统动态稳定性评估及广域协调控制方法研究
  • 批准号:
    52377078
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
侧向风作用下多开口火溢流火焰融合机制与特征参数演化规律
  • 批准号:
    52306170
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAP: AI-Assisted Supervisory Control of Wind Farm Connection to the Grid for Stability Monitoring
CAP:人工智能辅助风电场并网监控以进行稳定性监测
  • 批准号:
    2334256
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Harnessing the Power of Wind: Revolutionising Wind Farm Optimisation
利用风能:彻底改变风电场优化
  • 批准号:
    DP240101820
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Projects
Smart, Aware, Integrated Wind Farm Control Interacting with Digital Twins (ICONIC)
与数字孪生交互的智能、感知、集成风电场控制 (ICONIC)
  • 批准号:
    10095874
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    EU-Funded
Tackling the global blockage problem in a wind-farm due to interactions between turbulent wakes
解决风电场由于湍流尾流之间的相互作用而导致的全局堵塞问题
  • 批准号:
    2895226
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Fire-Retardant Composite Resins for Bushfire-Safe Wind Farm Infrastructures
用于丛林火灾安全风电场基础设施的阻燃复合树脂
  • 批准号:
    LP220100278
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Linkage Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了