CAREER: Next Generation Universal Radio Platform with On-Demand Operation across UHF to Sub-Terahertz Bands
事业:下一代通用无线电平台,可在 UHF 至亚太赫兹频段内按需运行
基本信息
- 批准号:1943040
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The growth of emergent communication systems in both the industrial and commercial sectors has created a strong demand for extremely wideband radio systems capable of handling multi-Giga-bits-per-second (Gbps) data rates. More precisely, the desire for general-use ‘5G and beyond’ radios require architectures with continuous operation across the whole millimeter-wave (mm-wave) spectrum up to the sub-terahertz (sub-THz) bands. However, a major barrier against achieving that goal is the associated signal loss that results from the large path loss and atmospheric absorption at those frequencies. High gain multi-antenna radios are a potential solution, but they require massive hardware, making them unsuitable for 5G devices. To reduce hardware requirements, research has been focused on implementing fully digital transceivers to replace most of the analog hardware with software operations. This hardware-to-software convergence is still limited to low frequencies and remains relatively expensive. This CAREER presents novel techniques to implement a universal radio architecture for operation across legacy, 5G, and future 6G bands using a single multifunctional and adaptable platform. This research will lead to improvement in terrestrial, airborne, satellite, and vehicle-to-vehicle communications. Also, mm-wave and sub-THz systems will enable assistive technology via miniature medical, wearable, and implantable devices. Therefore, this research will have significant societal benefits impacting daily life for all. The research proposed in this project will be integrated with the principal investigator’s educational plans to develop new courses for both undergraduate and graduate students with focus on 5G and mm-wave transceivers. Efforts will also be taken to broaden the participation of underrepresented groups in STEM via curriculum development, undergraduate research programs, and outreach efforts. A new STEM outreach program on hands-on activities on radio communications will be established that involves the children of formerly homeless population, predominantly Hispanics and African Americans, individuals with disabilities, substance use, and mental health disorders. The goal of this project is to study, design, and develop wideband multifunctional adaptable transceivers for operation across the 5G, mm-wave, and sub-THz spectrum. To date, transceivers that can handle extremely wide operational bandwidths are not available. Indeed, current radios suffer from several bottlenecks: 1) antennas suffer from size-bandwidth-gain tradeoffs and are very lossy at high frequencies (i.e. mm-wave and sub-THz), 2) wideband radio frequency (RF) components are costly, lossy, and nonlinear, 3) high speed digitizers are power hungry and cost prohibitive, and 4) baseband digital electronics and software defined radios (SDR) are limited to narrowband and low frequency operations. This CAREER addresses these issues and brings forward innovative techniques to implement a universal radio with ‘on demand’ operation from a few hundred MHz to sub-THz frequencies using a single multifunctional and upgradable platform that combines 1) extremely wideband and reconfigurable aperture-in-aperture radiator, 2) high frequency modular and tunable RF front-ends that are inexpensive and power efficient operating from UHF (300MHz) up to sub-THz (300GHz) bands, and 4) physical layer interference suppression techniques. Importantly, the proposed radio is upgradable with evolving SDR technologies. That is, as SDR frequency coverage expands into emergent bands and becomes more affordable for commercial use, the RF hardware will be replaced with software operations. This hardware-to-software convergence will contribute in further reduction of the modular hardware whereby more RF modules will be integrated in the SDR. The long-term vision of this project is to implement an affordable and efficient fully digital system, with minimum hardware, operating from the low microwave frequencies up to the mm-wave bands. Overall, the proposed architecture will enable interference resiliency with increased spectral efficiency, spatial filtering, and concurrent beams across extremely large bandwidths.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
工业和商业领域新兴通信系统的发展对能够处理每秒数千兆位(Gbps)数据速率的超宽带无线电系统产生了强烈的需求,更准确地说,是对通用性的需求。 “5G 及更高版本”无线电需要能够在整个毫米波 (mm-wave) 频谱直至亚太赫兹 (sub-THz) 频段内连续运行的架构。然而,实现这一目标的主要障碍是相关的信号丢失。结果高增益多天线无线电是一种潜在的解决方案,但它们需要大量硬件,因此不适合 5G 设备。为了降低硬件要求,研究重点是实现全数字收发器。用软件操作取代大多数模拟硬件。这种硬件到软件的融合仍然仅限于低频,并且仍然相对昂贵,它提供了实现跨传统、5G 和未来操作的通用无线电架构的新技术。使用单一多功能和适应性平台的 6G 频段将改善地面、机载、卫星和车对车通信。此外,毫米波和次太赫兹系统将通过微型医疗、可穿戴设备实现辅助技术。因此,这项研究将对所有人的日常生活产生重大的社会效益,该项目提出的研究将与主要研究者的教育计划相结合,为本科生和研究生开发新课程。 5G 和毫米波收发器还将通过课程开发、本科生研究计划和推广工作来扩大代表性不足的群体对无线电通信实践活动的参与。涉及以前无家可归者的儿童,主要是西班牙裔和非裔美国人、残疾人、药物滥用和精神健康障碍人士。该项目的目标是研究、设计和开发适用于整个地区的宽带多功能适应性收发器。 5G、毫米波和亚太赫兹频谱 迄今为止,还没有能够处理极宽工作带宽的收发器,目前的无线电设备面临着几个瓶颈:1) 天线面临着尺寸、带宽和增益的权衡问题。高频有损耗(即毫米波和亚太赫兹),2) 宽带射频 (RF) 元件成本高昂、有损耗且非线性,3) 高速数字转换器耗电量大且成本高昂,4) 基带数字电子设备和软件定义无线电 (SDR) 仅限于窄带和低频操作。本职业解决了这些问题,并提出了创新技术来实现具有“按需”操作的通用无线电。使用单个多功能且可升级的平台,从几百 MHz 到亚太赫兹频率,该平台结合了 1) 极宽带和可重新配置的孔径辐射器,2) 高频模块化和可调谐射频前端在 UHF (300MHz) 至次太赫兹 (300GHz) 频段运行,价格低廉且节能,并且 4) 物理层干扰抑制技术重要的是,所提出的无线电可通过不断发展的 SDR 技术进行升级。随着 SDR 频率覆盖范围扩展到新兴频段并变得更适合商业用途,射频硬件将被软件操作所取代,这种硬件到软件的融合将有助于进一步减少模块化硬件,从而减少更多的模块化硬件。 RF 模块将集成在 SDR 中。该项目的长期愿景是用最少的硬件实现一个经济实惠且高效的全数字系统,从低微波频率到毫米波频段。该架构将通过提高频谱效率、空间过滤和跨极大带宽的并发波束来实现抗干扰能力。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low Profile Dual-Band Shared Aperture Array for Vehicle-to-Vehicle Communication
用于车对车通信的薄型双频带共享孔径阵列
- DOI:10.1109/access.2021.3124311
- 发表时间:2024-09-13
- 期刊:
- 影响因子:3.9
- 作者:S. Govindarajulu;Rimon Hokayem;M. N. Tarek;Marisol Roman Guerra;E. Alwan
- 通讯作者:E. Alwan
Improving Isolation in Monostatic Simultaneous Transmit and Receive Systems Using a Quasi-Symmetrical Self-Interference Cancellation Architecture
使用准对称自干扰消除架构改善单基地同步发送和接收系统的隔离度
- DOI:10.1109/jmw.2022.3227242
- 发表时间:2023-04-01
- 期刊:
- 影响因子:0
- 作者:M. N. Tarek;Marisol Roman Guerra;Anthony Nunez;Md Nazim Uddin;E. Alwan
- 通讯作者:E. Alwan
A Modified T Shaped Complex FIR-Circuit for Simultaneous Transmit and Receive System
一种改进的T形复合FIR电路用于同步发射和接收系统
- DOI:10.1109/usnc-ursi52151.2023.10238277
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Anwar Tarek, Md Nurul;Guerra, Marisol Roman;Uddin, Md Nazim;Alwan, Elias A.
- 通讯作者:Alwan, Elias A.
Power Efficient RF Self-Interference Cancellation System for Simultaneous Transmit and Receive
用于同时发送和接收的高能效射频自干扰消除系统
- DOI:10.1109/aps/ursi47566.2021.9704722
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Anwar Tarek, Md Nurul;Roman, Marisol;Alwan, Elias A.
- 通讯作者:Alwan, Elias A.
Modified U Slot Patch Antenna with Large Frequency Ratio for Vehicle-to-Vehicle Communication
用于车车通信的大频比改进型U槽贴片天线
- DOI:10.3390/s23136108
- 发表时间:2023-07-03
- 期刊:
- 影响因子:0
- 作者:Govindarajulu SR;Tarek MNA;Guerra MR;Hassan A;Alwan E
- 通讯作者:Alwan E
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elias Alwan其他文献
Elias Alwan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elias Alwan', 18)}}的其他基金
NSF Convergence Accelerator Track G: Autonomously Tunable Waveform-Agnostic Radio Adapter for Seamless and Secure Operation of DoD Devices Through Non-Cooperative 5G Networks
NSF 融合加速器轨道 G:自主可调波形无关无线电适配器,可通过非合作 5G 网络无缝、安全地操作国防部设备
- 批准号:
2226392 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: SMALL: Autonomously Reconfigurable Hardware-Reduced Wideband Transceivers for Efficient Passive-Active Spectrum Coexistence
合作研究:SWIFT:SMALL:自主可重构硬件精简宽带收发器,实现高效无源-有源频谱共存
- 批准号:
2030250 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Conference Grant: Student Travel Awards for 2019 International Workshop on Antenna Technology (iWAT) to be held in Miami, Florida, March 3-6, 2019
会议补助金:2019 年国际天线技术研讨会 (iWAT) 学生旅行奖将于 2019 年 3 月 3 日至 6 日在佛罗里达州迈阿密举行
- 批准号:
1915772 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
MRI: Acquisition of an 18GHz to 110GHz Millimeter-Wave Anechoic Chamber
MRI:获取 18GHz 至 110GHz 毫米波电波暗室
- 批准号:
1828458 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
SoLoMo情形下“下一个最佳购物建议”(NBO)对消费者决策的影响机制研究
- 批准号:71302093
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Securing Next-Generation Transportation Infrastructure: A Traffic Engineering Perspective
职业:保护下一代交通基础设施:交通工程视角
- 批准号:
2339753 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
- 批准号:
2422478 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Next-Generation Flow Cytometry - A New Approach to Cell Heterogeneity
职业:下一代流式细胞术 - 细胞异质性的新方法
- 批准号:
2422750 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Next Generation of High-Level Synthesis for Agile Architectural Design (ArchHLS)
职业:下一代敏捷架构设计高级综合 (ArchHLS)
- 批准号:
2338365 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
- 批准号:
2339201 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant