CAREER: MemMax: Maximizing Cyberinfrastructure Memory Utilization via Hardware Acceleration for OS-level Memory Utilization Management
职业:MemMax:通过操作系统级内存利用率管理的硬件加速最大化网络基础设施内存利用率
基本信息
- 批准号:1942590
- 负责人:
- 金额:$ 51.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The performance growth of cyberinfrastructure systems, such as supercomputers and computing data centers, is important to US economy and well-being; it helps boost scientific and engineering productivity, which is vital for US global competitiveness and helps grow the US digital economy, which is an important part of overall US economy. Until recently, Moore’s Law guided the exponential growth of hardware resources under the same cost and has been a key driving factor behind cyberinfrastructure performance growth. As the growth predicted by Moore’s Law slows down, sustaining performance gains requires cyberinfrastructure to maximize the utilization of its available hardware resources, especially computing memory. Currently, cyberinfrastructure systems often only utilize up to a small fraction of their memory compared to what is physically and/or theoretically possible. As memory primarily serves as a performance enhancer, memory under-utilization causes under-performance and unnecessary investment in additional computing resources. This project seems to address this problem by identifying ways to better use memory resources in supercomputers and cloud computing systems, thereby increasing the efficiency and performance of these systems. The project, MemMax, actively involves both graduate and undergraduate students, along with outreach to K-12 students.MemMaX explores how to co-design CPU and OS to maximize memory utilization in cyberinfrastructure systems to boost their performance both user-transparently and substantially by a factor of up to 4. MemMax consists of two research thrusts, one targeting HPC systems and targeting cloud systems, as these two types of systems have different causes for their memory underutilization. The research methodology consists of real-system measurements to characterize the behavior of existing systems, hardware prototyping to valid the functional correctness of MemMax, and architectural simulations to quantify the performance improvement MemMax achieves.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
超级计算机和计算数据中心等网络基础设施系统的性能增长对美国经济和福祉至关重要,有助于提高科学和工程生产力,这对美国的全球竞争力至关重要,并有助于发展美国数字经济直到最近,摩尔定律引导着硬件资源在相同成本下呈指数级增长,并且一直是网络基础设施性能增长的关键驱动因素。随着摩尔定律预测的增长放缓,维持性能增长需要。网络基础设施,以最大限度地利用其可用硬件资源,特别是计算内存,目前,与物理和/或理论上可能的内存相比,网络基础设施系统通常仅使用一小部分内存,因为内存主要用作性能增强器。内存利用率不足会导致性能不佳和不必要的额外计算资源投资,该项目似乎通过找到更好地利用超级计算机和云计算系统中的内存资源的方法来解决这个问题,从而提高这些系统的效率和性能。 , 积极地涉及研究生和本科生,以及 K-12 学生。MemMaX 探索如何共同设计 CPU 和操作系统,以最大限度地提高网络基础设施系统中的内存利用率,从而以用户透明的方式大幅提高其性能高达 4 倍MemMax 包含两个研究重点,一是针对 HPC 系统,二是针对云系统,因为这两类系统造成内存利用率不足的原因不同,研究方法包括真实系统测量,以表征现有系统和硬件的行为。原型设计以验证 MemMax 的功能正确性,以及架构模拟以量化 MemMax 所实现的性能改进。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Translation-optimized Memory Compression for Capacity
针对容量进行翻译优化的内存压缩
- DOI:10.1109/micro56248.2022.00073
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Panwar, Gagandeep;Laghari, Muhammad;Bears, David;Liu, Yuqing;Jearls, Chandler;Choukse, Esha;Cameron, Kirk W.;Butt, Ali R.;Jian, Xun
- 通讯作者:Jian, Xun
Quantifying Server Memory Frequency Margin and Using It to Improve Performance in HPC Systems
量化服务器内存频率裕度并使用它来提高 HPC 系统的性能
- DOI:10.1109/isca52012.2021.00064
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Zhang, Da;Panwar, Gagandeep;Kotra, Jagadish B.;DeBardeleben, Nathan;Blanchard, Sean;Jian, Xun
- 通讯作者:Jian, Xun
Quantifying Memory Underutilization in HPC Systems and Using it to Improve Performance via Architecture Support
量化 HPC 系统中的内存利用率不足并通过架构支持利用它来提高性能
- DOI:10.1145/3352460.3358267
- 发表时间:2019-10-12
- 期刊:
- 影响因子:0
- 作者:Gag;eep Panwar;eep;Da Zhang;Yihan Pang;M. Dahshan;Nathan Debardeleben;B. Ravindran;Xun Jian
- 通讯作者:Xun Jian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xun Jian其他文献
Low-power, low-storage-overhead chipkill correct via multi-line error correction
通过多线纠错实现低功耗、低存储开销的chipkill纠正
- DOI:
10.1145/2503210.2503243 - 发表时间:
2013-11-17 - 期刊:
- 影响因子:0
- 作者:
Xun Jian;Henry Duwe;J. Sartori;Vilas Sridharan;Rakesh Kumar - 通讯作者:
Rakesh Kumar
On Efficiently Detecting Overlapping Communities over Distributed Dynamic Graphs
分布式动态图上重叠社区的有效检测
- DOI:
10.1109/icde.2018.00142 - 发表时间:
2018-01-18 - 期刊:
- 影响因子:0
- 作者:
Xun Jian;Xiang Lian;Lei Chen - 通讯作者:
Lei Chen
High Performance, Energy Efficient Chipkill Correct Memory with Multidimensional Parity
具有多维奇偶校验的高性能、高能效 Chipkill 正确内存
- DOI:
10.1109/l-ca.2012.21 - 发表时间:
2013-07-01 - 期刊:
- 影响因子:2.3
- 作者:
Xun Jian;J. Sartori;Henry Duwe;Rakesh Kumar - 通讯作者:
Rakesh Kumar
Effective and Efficient Relational Community Detection and Search in Large Dynamic Heterogeneous Information Networks
大型动态异构信息网络中有效且高效的关系社区检测和搜索
- DOI:
10.14778/3401960.3401969 - 发表时间:
2020-06-01 - 期刊:
- 影响因子:0
- 作者:
Xun Jian;Yue Wang;Lei Chen - 通讯作者:
Lei Chen
An Experimental Evaluation of Task Assignment in Spatial Crowdsourcing
空间众包任务分配的实验评估
- DOI:
10.14778/3236187.3236196 - 发表时间:
2018-07-01 - 期刊:
- 影响因子:0
- 作者:
Peng Cheng;Xun Jian;Lei Chen - 通讯作者:
Lei Chen
Xun Jian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xun Jian', 18)}}的其他基金
CSR:Medium: A Cross-stack Approach to Reduce Memory Carbon in Cloud Data Centers
CSR:Medium:减少云数据中心内存碳的跨堆栈方法
- 批准号:
2312785 - 财政年份:2023
- 资助金额:
$ 51.71万 - 项目类别:
Continuing Grant
CRII: SHF: Pointer-aware Memory: Boosting Cybersecurity by Making Strong Memory Protection Affordable for Irregular Applications
CRII:SHF:指针感知内存:通过为不规则应用程序提供强大的内存保护来增强网络安全
- 批准号:
1850025 - 财政年份:2019
- 资助金额:
$ 51.71万 - 项目类别:
Standard Grant
相似海外基金
Rapid Deepening Mechanism of an Extremely Intense Tropical Cyclone
特强热带气旋快速深化机制
- 批准号:
26400466 - 财政年份:2014
- 资助金额:
$ 51.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
臨界冪をもつ半線形波動方程式に対する初期境界値問題の解析
具有临界幂的半线性波动方程初边值问题分析
- 批准号:
14J02330 - 财政年份:2014
- 资助金额:
$ 51.71万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Reexamination of Innovation System from the Innovation Probability Maximization Principle
从创新概率最大化原理重新审视创新系统
- 批准号:
26380506 - 财政年份:2014
- 资助金额:
$ 51.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
C_3植物の個葉光合成の環境依存特性とその順化機構
C_3 植物单叶光合作用的环境依赖性特征及其适应机制
- 批准号:
02640514 - 财政年份:1990
- 资助金额:
$ 51.71万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)