Collaborative Research: Mechanism of protective symbiosis in the honey bee
合作研究:蜜蜂的保护性共生机制
基本信息
- 批准号:2005308
- 负责人:
- 金额:$ 35.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One out of every 3 mouthfuls of food consumed was pollinated by a bee. The honey bee is the most important agricultural pollinator in the US, adding $20 billion to the value of US crops annually. However, populations of honey bees are in decline due, in part, to pests and pathogens. In fact, the fungal pathogen Nosema is only second to the Varroa mite in the USDA list of stressors contributing to colony decline of honey bees (USDA Honey Bee Colonies survey, August, 2018). Without honey bees, large swathes of the agricultural economy would see declines in production. Combined with climate change, this loss in productivity will have a compounding effect on the ability to feed US citizens. Therefore, new technological innovations are needed to help mitigate the decline of honey bee colonies. This research will investigate a novel anti-fungal symbiont of honey bees, identify how it protects bees, and exactly what anti-fungal it produces. In addition to the benefits to bees, the discovery of novel anti-fungals may also have downstream benefits for human health in the fight against fungal pathogens, thus helping the bioeconomy. This project also supports the training of graduate students. Thus, this will support the education of the next generation of scientists who would ultimately work in the new bioeconomy.The goal of this research is to identify how a honey bee symbiont protects brood, honey bee larvae, from fungal pathogens. The dramatic decline of the honey bee population is likely due to environmental stressors including limited floral resources (nutritional stress), pathogens (immune stress), and exposure to fungicides and pesticides (chemical stress). Data shown here discovered that a bacterial symbiont of honey bees protects against one of these significant stressors: fungal pathogens. Preliminary data suggest that the symbiont secretes anti-fungal metabolite(s) that protects bee brood from fouling; both in vitro assays and larval infection experiments support this conclusion. This project aims to characterize how this symbiont protects bees. How did this trait evolve across the phylogeny of bee-associated and flower-associated alphaproteobacteria? And what is the identity of the antifungal metabolite? Applicants will use a combination of microbial assays, in vitro bee rearing, genetics, genomics, and chemistry to answer these questions. This is the first time that the mechanism of symbiosis for an anti-fungal symbiont in bees has been explored, and will allow biologists to identify how specific members of the honey bee microbiome affect brood health. Additionally, because this symbiont is related to those found associated with wild bees and flowers, it presents an ideal model in which to explore the selection and maintenance in a symbiont, of a host-beneficial trait. Broader impacts include research training for graduate students, and creating a research experience program for undergraduate students at two institutions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
每三分之一的食物中,一只蜜蜂都会授粉。蜜蜂是美国最重要的农业传粉媒介,每年为美国农作物的价值增加200亿美元。 但是,蜜蜂种群的下降部分是由于害虫和病原体的。 实际上,真菌病原体Nosema仅在USDA的瓦罗螨(Varroa Mite)中仅次于蜜蜂菌落下降的压力源清单(USDA Honey Bee Colonies Colonies Survey,2018年8月)。没有蜜蜂,大量农业经济的生产会下降。结合气候变化,生产力的这种损失将对养活美国公民的能力产生更大的影响。因此,需要新的技术创新来帮助减轻蜜蜂殖民地的衰落。这项研究将研究蜜蜂的新型抗真菌共生体,确定其如何保护蜜蜂,以及它所产生的抗真菌。除了对蜜蜂的益处外,新型抗神经的发现在与真菌病原体的斗争中也可能对人类健康具有下游益处,从而有助于生物经济。 该项目还支持研究生的培训。 因此,这将支持下一代科学家的教育,这些科学家最终将在新的生物经济学中工作。这项研究的目的是确定蜜蜂共生体如何保护育雏,蜜蜂幼虫,免受真菌病原体的侵害。蜜蜂种群的急剧下降可能是由于环境压力源,包括有限的花卉资源(营养应激),病原体(免疫应激)以及暴露于杀菌剂和农药(化学胁迫)。此处显示的数据发现,蜜蜂的细菌共生体可保护这些重要的胁迫之一:真菌病原体。初步数据表明,共生体分泌抗真菌代谢物,可保护蜜蜂育成免受污染。体外测定和幼虫感染实验都支持这一结论。该项目旨在表征这种共生体如何保护蜜蜂。这种特征如何在蜜蜂相关和与花相关的字母内的系统发育中发展?抗真菌代谢物的身份是什么?申请人将使用微生物测定,体外蜜蜂饲养,遗传学,基因组学和化学的组合来回答这些问题。这是第一次探索了蜜蜂中抗真菌共生体的共生机制,并将允许生物学家确定蜜蜂微生物组的特定成员如何影响育雏。此外,由于该共生体与与野生蜜蜂和花朵有关的共生体相关,因此它提出了一个理想的模型,可以在其中探索共生体中宿主 - 贝表面性状的选择和维护。更广泛的影响包括针对研究生的研究培训,以及为两家机构的本科生创建研究经验计划。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评估评估的评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marcy Balunas其他文献
Marcy Balunas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marcy Balunas', 18)}}的其他基金
Collaborative Research: Structure and function: How microenvironment facilitates antimicrobial response to environmental stress in a defensive symbiosis
合作研究:结构和功能:微环境如何促进防御性共生中的抗菌剂对环境应激的反应
- 批准号:
2247196 - 财政年份:2023
- 资助金额:
$ 35.51万 - 项目类别:
Standard Grant
Collaborative Research: Mechanism of protective symbiosis in the honey bee
合作研究:蜜蜂的保护性共生机制
- 批准号:
2306200 - 财政年份:2022
- 资助金额:
$ 35.51万 - 项目类别:
Continuing Grant
相似国自然基金
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
- 批准号:32302064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
车联网中基于多智能体系统的协同优化机制研究
- 批准号:62302062
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向智能物联网的端边协作机制与任务调度方法研究
- 批准号:62372038
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CLSTN3β介导的内质网-线粒体协作调控白色脂肪细胞能量代谢改善肥胖的机制研究
- 批准号:82300980
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多UAV协作的大规模传感网并发充电模型及其服务机制研究
- 批准号:62362017
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
- 批准号:
2342025 - 财政年份:2024
- 资助金额:
$ 35.51万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 35.51万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 35.51万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 35.51万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
- 批准号:
2342024 - 财政年份:2024
- 资助金额:
$ 35.51万 - 项目类别:
Standard Grant