Collaborative Research: Frameworks: Ghub as a Community-Driven Data-Model Framework for Ice-Sheet Science
合作研究:框架:Ghub 作为社区驱动的冰盖科学数据模型框架
基本信息
- 批准号:2004826
- 负责人:
- 金额:$ 352.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Sea level rise is challenging societies around the globe. Planning for future sea level rise in the US is critical for national security, public health, and socioeconomic stability. However, current predictions of sea level rise remain uncertain, because the future behavior of melting ice sheets - a primary cause of sea level rise - is not well understood. A recent United Nations report (IPCC Special Report on the Ocean and Cryosphere in a Changing Climate) summarized two startling facts: (i) Recent sea level rise acceleration is due to increased ice loss from the Greenland and Antarctic ice sheets; and (ii) Uncertainty related to ice-sheet instability arises from limited observations, incomplete representation of ice-sheet processes in current models, and evolving understanding of the complex interactions between the atmosphere, ocean and ice sheets. Improving our ability to forecast the health of ice sheets and hence, predictions of future sea level rise, requires a large, long-lasting collective effort among ice sheet scientists working closely with scientists from the modeling and remote sensing disciplines. One challenge in this collective effort is the range of disciplines and approaches to ice-sheet science - the degree of specialization is an obstacle to efficient collaborative work. This project will lower the barriers among sub-disciplines in ice-sheet science by creating and promoting a centralized web-based hub, called “Ghub,” where datasets and tools will be made accessible to the full range of ice sheet science fields of study. Ghub is accessible to all interested scientists and lay personnel. Use of Ghub includes access to datasets, analysis tools, and cloud computing power, as well as the ability to develop and share new tools within the Ghub environment. Several avenues of outreach and education as part of the Ghub project are specifically aimed at framing ice-sheet science for general audiences, and including students from underrepresented groups.The urgency in reducing uncertainties of near-term sea level rise relies on improved modeling of ice-sheet response to climate change. Predicting future ice-sheet change requires a tremendous effort across a range of disciplines in ice-sheet science including expertise in observational data, paleoglaciology ("paleo") data, numerical ice sheet modeling, and widespread use of emerging methodologies for learning from the data, such as machine learning. However, significant knowledge and disciplinary barriers make collaboration between data and model groups the exception rather than the norm. Most modeling groups write their own tools to ingest data and analyze output, newer and larger observational datasets are not being fully taken advantage of by the modeling community, and paleo data critical for constraining model representation of ice sheet history are largely inaccessible to modelers. The diverse disciplinary approaches to ice-sheet science has led to bottlenecks that slow the response to the developing crisis. Coordination between data generators and modelers is critical for testing data-driven hypotheses, providing mechanistic explanations for past ice-sheet change, and incorporating newly understood physical processes and validating models to improve their predictive ability. Solving the urgent problem of unoptimized collaboration requires a novel, integrated, trans-disciplinary program that lowers barriers across the distinct approaches to ice-sheet science. Fostering collaboration between disciplines will lead to a transformational leap in ice-sheet and sea-level science. To make the leap, we must improve the efficiency in collaboration among traditionally disparate approaches to the problem. We will develop a community-building scientific and educational cyberinfrastructure framework including models and data processing tools, to enable coordination and synergistic exchange between ice-sheet scientific communities. The new cyberinfrastructure will be a significant bridge that connects the numerical ice-sheet modeling community with rapidly growing observational datasets of past and present ice-sheet states that will ultimately improve predictions of sea level rise. The GHub cyberinfrastructure will also be a template for organizing disparate scientific communities to address urgent societal needs in a timely fashion.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
海平面上升是挑战地球的挑战。但是,当前的海平面预测仍然不确定,因为融化冰盖的未来行为是海平面的主要原因(IPCC气候)总结了两个令人震惊的事实:(i)最近的海平面上升加速度是由于格陵兰和南极冰的增加而引起的;并了解复杂的互动,大气E,海洋和冰盖,改善了我们的冰的健康,因此可以预测未来的海平面上升集体的集体一个。基于所有感兴趣的科学家和外行人员都可以访问B的“ GHUB”。随着GHUB设想中的新工具的奉献精神,作为GHUB项目的一部分,旨在为包括不足的学生包括在内的冰上科学。在改进的冰模型上,人们对气候变化的反应需要在冰格科学的一系列学科中做出巨大的努力但是,从机器学习等数据中学习的Hodologies。冰盖历史的生态数据的关键数据对建模者来说是无法访问的。并验证了他们的预测能力。对于这个问题,我们将开发一些包括模型和数据处理工具的ERINFRASTRUCTURE框架,新的CyberinFrastructure将是一座重要的桥梁,将数值的冰单建模社区与过去和现在的冰单的观察者TS结合在一起,以最终改善预测海平面上升,以及时的方式来解决需求。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GHub : Building a glaciology gateway to unify a community
GHub:建立一个冰川学门户来统一社区
- DOI:10.1002/cpe.6130
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Sperhac, Jeanette M.;Poinar, Kristin;Jones‐Ivey, Renette;Briner, Jason;Csatho, Beata;Nowicki, Sophie;Simon, Erika;Larour, Eric;Quinn, Justin;Patra, Abani
- 通讯作者:Patra, Abani
Firn aquifer water discharges into crevasses across Southeast Greenland
- DOI:10.1017/jog.2023.25
- 发表时间:2023-05
- 期刊:
- 影响因子:3.4
- 作者:Eric Cicero;K. Poinar;R. Jones-Ivey;A. Petty;Jeanette M. Sperhac;A. Patra;J. Briner
- 通讯作者:Eric Cicero;K. Poinar;R. Jones-Ivey;A. Petty;Jeanette M. Sperhac;A. Patra;J. Briner
GLAcier Feature Tracking testkit (GLAFT): a statistically and physically based framework for evaluating glacier velocity products derived from optical satellite image feature tracking
GLAcier 特征跟踪测试套件 (GLAFT):一个基于统计和物理的框架,用于评估源自光学卫星图像特征跟踪的冰川速度产品
- DOI:10.5194/tc-17-4063-2023
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Zheng, Whyjay;Bhushan, Shashank;Van Wyk De Vries, Maximillian;Kochtitzky, William;Shean, David;Copland, Luke;Dow, Christine;Jones-Ivey, Renette;Pérez, Fernando
- 通讯作者:Pérez, Fernando
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Briner其他文献
Jason Briner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Briner', 18)}}的其他基金
Collaborative Research: GRate – Integrating data and modeling to quantify rates of Greenland Ice Sheet change, Holocene to future
合作研究:GRate — 整合数据和模型来量化格陵兰冰盖变化率、全新世到未来
- 批准号:
2106971 - 财政年份:2021
- 资助金额:
$ 352.29万 - 项目类别:
Standard Grant
Collaborative Research: GreenDrill: The response of the northern Greenland Ice Sheet to Arctic Warmth - Direct constrains from sub-ice bedrock
合作研究:GreenDrill:格陵兰岛北部冰盖对北极温暖的响应 - 来自冰下基岩的直接限制
- 批准号:
1933938 - 财政年份:2020
- 资助金额:
$ 352.29万 - 项目类别:
Continuing Grant
Benchmarking Spatial Patterns of Glacier Change
冰川变化的空间模式基准测试
- 批准号:
1853705 - 财政年份:2019
- 资助金额:
$ 352.29万 - 项目类别:
Standard Grant
EAGER: Exploring a community driven data-model framework for testing the stability of the Greenland Ice Sheet
EAGER:探索社区驱动的数据模型框架来测试格陵兰冰盖的稳定性
- 批准号:
1837544 - 财政年份:2018
- 资助金额:
$ 352.29万 - 项目类别:
Standard Grant
The Stability of the Greenland Ice Sheet
格陵兰冰盖的稳定性
- 批准号:
1741833 - 财政年份:2017
- 资助金额:
$ 352.29万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: Late Pleistocene Glaciation in Southeastern Alaska: Assessing the Sensitivity of a Marine-Terminating Ice Sheet to Changing Environmental Conditions
博士论文研究:阿拉斯加东南部更新世晚期冰川作用:评估海洋终止冰盖对环境条件变化的敏感性
- 批准号:
1657065 - 财政年份:2017
- 资助金额:
$ 352.29万 - 项目类别:
Standard Grant
Collaborative Research: Ice sheet sensitivity in a changing Arctic system - using Geologic data and modeling to test the stable Greenland Ice Sheet hypothesis
合作研究:不断变化的北极系统中的冰盖敏感性 - 使用地质数据和建模来检验稳定的格陵兰冰盖假说
- 批准号:
1504267 - 财政年份:2015
- 资助金额:
$ 352.29万 - 项目类别:
Standard Grant
Collaborative Research: Testing Arctic Ice Sheet Sensitivity to Abrupt Climate Change
合作研究:测试北极冰盖对气候突变的敏感性
- 批准号:
1417783 - 财政年份:2014
- 资助金额:
$ 352.29万 - 项目类别:
Standard Grant
The Response of the Greenland Ice Sheet to Holocene Climate Change: Testing Ice Sheet Models and Forcing Mechanisms of Ice-Margin Change
格陵兰冰盖对全新世气候变化的响应:测试冰盖模型和冰缘变化的强迫机制
- 批准号:
1156361 - 财政年份:2012
- 资助金额:
$ 352.29万 - 项目类别:
Standard Grant
Collaborative Research: Arctic Sensitivity to Climate Perturbations and a Millenial Perspective on Current Warming Derived from Shrinking Ice Caps
合作研究:北极对气候扰动的敏感性以及对冰盖缩小导致的当前变暖的千年视角
- 批准号:
1204005 - 财政年份:2012
- 资助金额:
$ 352.29万 - 项目类别:
Standard Grant
相似国自然基金
多价框架核酸与CRISPR/Cas协作传感平台研究及三阴性乳腺癌术后监测应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于高阶正则化半监督学习的多跟踪器框架模型及融合策略研究
- 批准号:61571362
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
表示模型框架下高光谱遥感影像分类若干技术研究
- 批准号:61571033
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
随机几何框架下的多层异构蜂窝网中物理层安全问题研究
- 批准号:61401510
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
协作性公共管理视角下的草原碳汇管理框架设计及应用研究
- 批准号:71363039
- 批准年份:2013
- 资助金额:36.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
- 批准号:
2411152 - 财政年份:2024
- 资助金额:
$ 352.29万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411297 - 财政年份:2024
- 资助金额:
$ 352.29万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411298 - 财政年份:2024
- 资助金额:
$ 352.29万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 352.29万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 352.29万 - 项目类别:
Standard Grant