CAREER: Learning Neurosymbolic 3D Models

职业:学习神经符号 3D 模型

基本信息

  • 批准号:
    1941808
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

High-quality 3D models are increasingly in demand, driven by numerous industries and by the need for synthetic training data to scale up autonomous vision systems. But creating such models is a laborious and time-consuming process requiring years of training, so current practice will be insufficient to satisfy future data demands. One way forward is through generative models of 3D objects, that is to have machines learn to synthesize high-quality objects, a nice vision which has yet to be realized. Existing 3D generative models fall into one of two broad categories, each with limitations. Symbolic generative models such as shape grammars can enable non-experts to generate high-quality geometry but have severely limited expressiveness, while neural generative models are flexible and can in theory learn to express any shape but they are inscrutable and produce flawed geometry. This project will explore a new class of generative shape model that combines the best of both worlds: neuro-symbolic 3D models. The main insight is to use a symbolic program to model the logical part structure of a 3D object (e.g., the legs of a chair are connected to its seat), and then to use neural networks to refine this structure into high-quality geometry. Such a representation supports synthesis of new objects, reconstruction of objects from real-world sensor input, and high-level editing of object structure and geometry. It also supports modeling of higher-order object properties, including kinematics and physics. To enable massive-scale generation of synthetic 3D training data for computer vision and robotics, a neuro-symbolic version of the widely used ShapeNet dataset will be implemented and released. To help democratize 3D content creation, the project will collaborate with Unity Technologies to integrate neuro-symbolic 3D models into their popular 3D graphics engine. Project outcomes will also include an open-source, pedagogical deep learning framework to educate a new generation of researchers with the multidisciplinary skillset needed for neuro-symbolic modeling, in concert with activities (e.g., piloting new integrated visual computing curricula via summer schools and hosting visiting student researchers from historically under-represented groups) designed to improve student mastery of neural network fundamentals.The recognition-by-components theory of vision posits that people recognize objects by first understanding their fundamental parts and then using a secondary process to handle objects that are not distinguishable by these parts alone. Neuro-symbolic 3D models operationalize this theory for object synthesis via two algorithmic phases. The first phase is a new procedural representation called a hierarchical part graph program that is a human-readable computer program which, when executed, constructs a graph of connected object parts at multiple levels of detail wherein the bottom level of detail consists of parametric primitives such as cuboids and cylinders. While suggestive of shape, these graphs do not capture the full variety of geometry found in real-world objects. Thus, the second phase of the model is a new neural adaptive subdivision procedure which converts the low-fidelity parts into high-fidelity surface geometry. This decomposition is a natural fit for the common case of human-made objects, but it can also be extended to organic objects. The hypothesis is that this approach to 3D object generation will be able to efficiently synthesize and reconstruct a variety of high-quality objects in a unified, easily-editable representation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在众多行业以及扩展自主视觉系统所需的合成训练数据的推动下,高质量 3D 模型的需求日益增长。但创建此类模型是一个费力且耗时的过程,需要多年的训练,因此当前的实践不足以满足未来的数据需求。前进的一种方法是通过 3D 对象的生成模型,即让机器学习合成高质量的对象,这是一个尚未实现的美好愿景。现有的 3D 生成模型属于两大类之一,每一类都有局限性。形状语法等符号生成模型可以使非专家生成高质量的几何图形,但表达能力严重有限,而神经生成模型很灵活,理论上可以学习表达任何形状,但它们难以理解并产生有缺陷的几何图形。 该项目将探索一类新的生成形状模型,它结合了两个领域的优点:神经符号 3D 模型。主要见解是使用符号程序对 3D 对象的逻辑部分结构进行建模(例如,椅子的腿与其座椅相连),然后使用神经网络将该结构细化为高质量的几何形状。这种表示支持新对象的合成、根据现实世界传感器输入重建对象以及对象结构和几何形状的高级编辑。它还支持高阶对象属性的建模,包括运动学和物理学。 为了能够大规模生成计算机视觉和机器人技术的合成 3D 训练数据,将实现并发布广泛使用的 ShapeNet 数据集的神经符号版本。为了帮助实现 3D 内容创建的民主化,该项目将与 Unity Technologies 合作,将神经符号 3D 模型集成到其流行的 3D 图形引擎中。项目成果还将包括一个开源的教学深度学习框架,以教育新一代研究人员具备神经符号建模所需的多学科技能,并与活动相结合(例如,通过暑期学校试行新的综合视觉计算课程并主办来自历史上代表性不足群体的访问学生研究人员)旨在提高学生对神经网络基础知识的掌握。视觉成分识别理论假设人们通过首先理解其基本部分然后使用辅助过程来识别物体处理仅靠这些部分无法区分的对象。神经符号 3D 模型通过两个算法阶段将这一理论应用于对象合成。第一阶段是一种称为分层零件图程序的新程序表示,它是一种人类可读的计算机程序,在执行时会在多个细节级别构建连接的对象零件的图,其中底层细节由参数基元组成,例如如长方体和圆柱体。虽然暗示了形状,但这些图表并没有捕捉到现实世界物体中发现的全部几何形状。因此,模型的第二阶段是新的神经自适应细分过程,它将低保真度零件转换为高保真度表面几何形状。这种分解非常适合人造物体的常见情况,但它也可以扩展到有机物体。假设这种 3D 对象生成方法将能够以统一的、易于编辑的表示形式有效地合成和重建各种高质量对象。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unsupervised Kinematic Motion Detection for Part-segmented 3D Shape Collections
用于部分分段 3D 形状集合的无监督运动检测
  • DOI:
    10.1145/3528233.3530742
  • 发表时间:
    2022-06-17
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xianghao Xu;Yifan Ruan;Srinath Sridhar;Daniel Ritchie
  • 通讯作者:
    Daniel Ritchie
PLAD: Learning to Infer Shape Programs with Pseudo-Labels and Approximate Distributions
PLAD:学习用伪标签和近似分布推断形状程序
  • DOI:
    10.1109/cvpr52688.2022.00964
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jones, R. Kenny;Walke, Homer;Ritchie, Daniel
  • 通讯作者:
    Ritchie, Daniel
ShapeMOD: macro operation discovery for 3D shape programs
ShapeMOD:3D 形状程序的宏操作发现
  • DOI:
    10.1145/3450626.3459821
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Jones, R. Kenny;Charatan, David;Guerrero, Paul;Mitra, Niloy J.;Ritchie, Daniel
  • 通讯作者:
    Ritchie, Daniel
ShapeAssembly: learning to generate programs for 3D shape structure synthesis
ShapeAssembly:学习生成 3D 形状结构合成程序
  • DOI:
    10.1145/3414685.3417812
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Jones, R. Kenny;Barton, Theresa;Xu, Xianghao;Wang, Kai;Jiang, Ellen;Guerrero, Paul;Mitra, Niloy J.;Ritchie, Daniel
  • 通讯作者:
    Ritchie, Daniel
ShapeCoder: Discovering Abstractions for Visual Programs from Unstructured Primitives
ShapeCoder:从非结构化基元中发现视觉程序的抽象
  • DOI:
    10.1145/3592416
  • 发表时间:
    2023-05-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. K. Jones;Paul Guerrero;N. Mitra;Daniel Ritchie
  • 通讯作者:
    Daniel Ritchie
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Ritchie其他文献

Example‐based Authoring of Procedural Modeling Programs with Structural and Continuous Variability
基于示例的具有结构和连续可变性的程序建模程序的编写
  • DOI:
    10.1111/cgf.13371
  • 发表时间:
    2018-05-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Daniel Ritchie;Sarah Jobalia;Anna T. Thomas
  • 通讯作者:
    Anna T. Thomas
SHRED
撕碎
  • DOI:
    10.1145/3550454.3555440
  • 发表时间:
    2022-06-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. K. Jones;Aalia Habib;Daniel Ritchie
  • 通讯作者:
    Daniel Ritchie
Learning to Edit Visual Programs with Self-Supervision
学习通过自我监督编辑视觉程序
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. K. Jones;Renhao Zhang;Aditya Ganeshan;Daniel Ritchie
  • 通讯作者:
    Daniel Ritchie
Learning Finite Linear Temporal Logic Formulas
学习有限线性时态逻辑公式
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Homer Walke;Michael S. Littman;Daniel Ritchie
  • 通讯作者:
    Daniel Ritchie
Deep Amortized Inference for Probabilistic Programs
概率程序的深度摊销推理
  • DOI:
    10.1039/c4nr02625j
  • 发表时间:
    2016-10-18
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Ritchie;Paul Horsfall;Noah D. Goodman
  • 通讯作者:
    Noah D. Goodman

Daniel Ritchie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Ritchie', 18)}}的其他基金

CISE-ANR: HCC: Small: Learning to Translate Freehand Design Drawings into Parametric CAD Programs
CISE-ANR:HCC:小型:学习将手绘设计图转换为参数化 CAD 程序
  • 批准号:
    2315354
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
REU Site: Artificial Intelligence for Computational Creativity
REU 网站:人工智能促进计算创造力
  • 批准号:
    2150184
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CCRI: Planning: A Community-Standard, Large-Scale Synthetic 3D Scene Dataset for Scene Analysis and Synthesis
CCRI:规划:用于场景分析和合成的社区标准、大规模合成 3D 场景数据集
  • 批准号:
    2016532
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CCRI: Planning: A Community-Standard, Large-Scale Synthetic 3D Scene Dataset for Scene Analysis and Synthesis
CCRI:规划:用于场景分析和合成的社区标准、大规模合成 3D 场景数据集
  • 批准号:
    2016532
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CHS: Small: Learning to Automatically Design Interior Spaces
CHS:小:学习自动设计室内空间
  • 批准号:
    1907547
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CRII: CHS: Learning Procedural Modeling Programs for Computer Graphics from Examples
CRII:CHS:从示例中学习计算机图形学程序建模程序
  • 批准号:
    1753684
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似国自然基金

面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于自监督学习的非规则网格混采数据分离与重建方法研究
  • 批准号:
    42304125
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
不完备多视图学习与缺失信息复原研究
  • 批准号:
    62372136
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
病理图像深度学习可解释性关键技术研究
  • 批准号:
    62371409
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
  • 批准号:
    82371878
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
  • 批准号:
    LP230100439
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Linkage Projects
Learning to Reason in Reinforcement Learning
在强化学习中学习推理
  • 批准号:
    DP240103278
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Projects
Learning how we learn: linking inhibitory brain circuits to motor learning
了解我们如何学习:将抑制性大脑回路与运动学习联系起来
  • 批准号:
    DE240100201
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Early Career Researcher Award
Trustworthy Hypothesis Transfer Learning
可信假设迁移学习
  • 批准号:
    DE240101089
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Early Career Researcher Award
Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
  • 批准号:
    10073285
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Feasibility Studies
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了