Causal Inference and Machine Learning Methods
因果推理和机器学习方法
基本信息
- 批准号:1941419
- 负责人:
- 金额:$ 12.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2022-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Causal Inference is a broad area of statistical research where investigators are interested in the quantitative exploration of cause and effect relationships between exposures and outcomes. Questions that fall under this framework range across a vast canvass of applications, including, medical sciences and biology, economics, social sciences, and environmental health. Specific examples can include understanding the efficacy of treatments for a disease, the importance of genes and proteins on deciding biological functions, the interplay between environmental factors and genetic variations on human mortality, and the role of careful product placements to modulate market behaviors. This immense breadth of the statistical paradigm naturally comes with its share of subtleties and pitfalls. One of the major challenges in a statistically principled analysis of cause and effects is the presence of other factors, known as confounders, which often mislead investigators in falsely believing spurious relationships. Accounting for such confounders, therefore, becomes of great importance. The increasing ability of human beings to collect more and more data has made measurements of many such factors possible in common examples of causal inference studies. Although in principle, this has made causal inference a more feasible and exciting field, the mathematical formalism of such studies still come with a burden of assumptions to deal with these confounders -- which can often be extremely restrictive for practical applications. It is widely believed that tools from machine learning and artificial intelligence are natural choices to alleviate the burden of these assumptions. This project is aimed at understanding the role of these tools in disentangling causal inference related questions in a statistically principled and mathematically sound manner. As mentioned above, it is often argued that the use of machine-learning methods to nonparametrically estimate nuisance parameters alleviates the burden of the assumptions made in observational studies. Although true at heart, most machine learning methods are geared to attain low prediction errors in regression type problems -- whereas estimation of quantities like causal effects might require a somewhat different understanding. This project is, therefore, aimed at disentangling some machine learning algorithms used in the study of causal effects. The major goals of this project can be divided into the following regimes -- (i) exploring the crucial, and often overlooked, need of formal statistical methods for inferring causal effects which are adaptive over standard assumptions made in practice, (ii) a causal mediation analysis framework which paves the way for seamless application of state of the art machine learning methods, and (iii) the mathematical exploration of machine learning algorithms such as deep neural networks and generative adversarial networks in the context of these inferential problems. The developed understanding will be used to explore the effect of early life exposure to metal mixtures (like lead, arsenic, and cadmium exposures through drinking water) on late-life neurological diseases (such as Alzheimer's disease) and the potential role of high dimensional biomarkers such as EV miRNA's that might modulate such effects.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
因果推理是统计研究的一个广泛领域,研究人员对定量探索暴露与结果之间的因果关系感兴趣。该框架下的问题涉及广泛的应用领域,包括医学和生物学、经济学、社会科学和环境健康。 具体的例子可以包括了解疾病治疗的功效、基因和蛋白质对决定生物功能的重要性、环境因素和遗传变异对人类死亡率的相互作用,以及精心植入的产品在调节市场行为中的作用。统计范式的如此巨大的广度自然也伴随着它的微妙之处和陷阱。对因果关系进行统计学原则分析的主要挑战之一是存在其他因素,即混杂因素,这些因素常常误导调查人员,错误地相信虚假关系。因此,考虑这些混杂因素变得非常重要。人类收集越来越多数据的能力不断增强,使得在因果推理研究的常见例子中测量许多此类因素成为可能。尽管从原则上讲,这使得因果推理成为一个更加可行和令人兴奋的领域,但此类研究的数学形式主义仍然带有处理这些混杂因素的假设负担——这往往对实际应用产生极大的限制。人们普遍认为,机器学习和人工智能工具是减轻这些假设负担的自然选择。该项目旨在了解这些工具在以统计原理和数学上合理的方式解开因果推理相关问题方面的作用。如上所述,人们经常认为,使用机器学习方法来非参数估计有害参数可以减轻观察研究中所做假设的负担。虽然本质上是正确的,但大多数机器学习方法都是为了在回归类型问题中获得较低的预测误差,而对因果效应等数量的估计可能需要有所不同的理解。因此,该项目旨在理清因果效应研究中使用的一些机器学习算法。该项目的主要目标可分为以下几个方面:(i) 探索对正式统计方法的关键且经常被忽视的需求,以推断因果效应,这些方法适用于实践中所做的标准假设,(ii) 因果关系中介分析框架为最先进的机器学习方法的无缝应用铺平了道路,以及(iii)在这些推理问题的背景下对深度神经网络和生成对抗网络等机器学习算法的数学探索。所形成的理解将用于探索生命早期接触金属混合物(例如通过饮用水接触铅、砷和镉)对晚年神经系统疾病(例如阿尔茨海默病)的影响以及高维生物标志物的潜在作用该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Nearly Assumption-Free Tests of Nominal Confidence Interval Coverage for Causal Parameters Estimated by Machine Learning
关于机器学习估计的因果参数的名义置信区间覆盖的近无假设检验
- DOI:10.1214/20-sts786
- 发表时间:2019-04-08
- 期刊:
- 影响因子:5.7
- 作者:Lin Liu;R. Mukherjee;J. Robins
- 通讯作者:J. Robins
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajarshi Mukherjee其他文献
Middle Meningeal Artery Embolization in Adjunction to Surgical Evacuation for Treatment of Subdural Hematomas: A Nationwide Comparison of Outcomes With Isolated Surgical Evacuation
脑膜中动脉栓塞联合手术清除治疗硬膜下血肿:全国范围内单独手术清除的结果比较
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:4.8
- 作者:
Mirhojjat Khorasanizadeh;S. Maroufi;Rajarshi Mukherjee;Madhav Sankaranarayanan;J. Moore;C. Ogilvy - 通讯作者:
C. Ogilvy
Chaiqin chengqi decoction ameliorates acute pancreatitis in mice via inhibition of neuron activation-mediated acinar cell SP/NK1R signaling pathways
柴芩承气汤通过抑制神经元激活介导的腺泡细胞SP/NK1R信号通路改善小鼠急性胰腺炎
- DOI:
10.1016/j.jep.2021.114029 - 发表时间:
2021 - 期刊:
- 影响因子:5.4
- 作者:
Chenxia Han;Dan Du;Yongjian Wen;Jiawang Li;Rui Wang;Tao Jin;Jingyu Yang;Na Shi;Kun Jiang;Lihui Deng;Xianghui Fu;Rajarshi Mukherjee;John A Windsor;Jiwon Hong;Anthony R Phillips;Robert Sutton;Wei Huang;Tingting Liu;Qing Xia - 通讯作者:
Qing Xia
Acinar Cell NLRP3 Inflammasome and GSDMD Activation Mediates Pyroptosis and Systemic Inflammation in Acute Pancreatitis
腺泡细胞 NLRP3 炎症小体和 GSDMD 激活介导急性胰腺炎焦亡和全身炎症
- DOI:
10.3167/arms.2020.030118 - 发表时间:
2021 - 期刊:
- 影响因子:7.3
- 作者:
Lin Gao;Xiaowu Dong;Weijuan Gong;Wei Huang;Jing Xue;Qingtian Zhu;Nan Ma;Weiwei Chen;Xianghui Fu;Xiang Gao;Zhaoyu Lin;Yanbing Ding;Juanjuan Shi;Zhihui Tong;Tingting Liu;Rajarshi Mukherjee;Robert Sutton;Guotao Lu;Weiqin Li - 通讯作者:
Weiqin Li
Targeted nanopore sequencing enables complete characterisation of structural deletions initially identified using exon‐based short‐read sequencing strategies
靶向纳米孔测序能够对最初使用基于外显子的短读长测序策略识别的结构缺失进行完整表征
- DOI:
10.1002/mgg3.2164 - 发表时间:
2023-06 - 期刊:
- 影响因子:2
- 作者:
Benjamin McClinton;Laura A. Crinnion;M. Mckibbin;Rajarshi Mukherjee;J. Poulter;Claire E L Smith;Manir Ali;C. Watson;C. Inglehearn;C. Toomes - 通讯作者:
C. Toomes
Multi-omics analysis in human retina uncovers ultraconserved cis-regulatory elements at rare eye disease loci
人类视网膜的多组学分析揭示了罕见眼病位点的超保守顺式调控元件
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Victor Lopez Soriano;A. Dueñas Rey;Rajarshi Mukherjee;F. Coppieters;M. Bauwens;Andy Willaert;E. De Baere - 通讯作者:
E. De Baere
Rajarshi Mukherjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajarshi Mukherjee', 18)}}的其他基金
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
- 批准号:
2338760 - 财政年份:2024
- 资助金额:
$ 12.07万 - 项目类别:
Continuing Grant
相似国自然基金
基于跨模态推理的机器阅读理解技术研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
具有常识推理能力的机器翻译模型研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向机器学习推理服务的模型遗忘隐私保护研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于关系推理的初等数学机器解答研究
- 批准号:62177025
- 批准年份:2021
- 资助金额:47 万元
- 项目类别:面上项目
基于分层表示推理的高铁沿线风速预报机器学习方法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Bayesian machine learning for complex missing data and causal inference with a focus on cardiovascular and obesity studies
用于复杂缺失数据和因果推理的贝叶斯机器学习,重点关注心血管和肥胖研究
- 批准号:
10563598 - 财政年份:2023
- 资助金额:
$ 12.07万 - 项目类别:
Leveraging Causal Inference and Machine Learning Methods to Advance Evidence-Based Maternal Care and Improve Newborn Health Outcomes
利用因果推理和机器学习方法推进循证孕产妇护理并改善新生儿健康结果
- 批准号:
10604856 - 财政年份:2023
- 资助金额:
$ 12.07万 - 项目类别:
Who is most affected by bullying in academic performance? An empirical study using causal inference and machine learning
谁在学业成绩上受到欺凌的影响最大?
- 批准号:
23K01372 - 财政年份:2023
- 资助金额:
$ 12.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Peering Inside the Black Box: Exploring Innovations in Interpretable Machine Learning and Causal Inference for the Explanation of Political Violence
窥视黑匣子:探索可解释的机器学习和因果推理的创新以解释政治暴力
- 批准号:
2901789 - 财政年份:2023
- 资助金额:
$ 12.07万 - 项目类别:
Studentship
Applying Causal Inference and Deep Learning to Improve the Accuracy and Equity of Pulmonary Function Test Interpretation.
应用因果推理和深度学习提高肺功能测试解释的准确性和公平性。
- 批准号:
10749527 - 财政年份:2023
- 资助金额:
$ 12.07万 - 项目类别: