D3SC: Collaborative Research: Overcoming Challenges in Classification Near the Limit of Determination
D3SC:协作研究:克服接近确定极限的分类挑战
基本信息
- 批准号:2003839
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With support from the Chemical Measurement & Imaging program in the Division of Chemistry, and partial co-funding from the Established Program to Stimulate Competitive Research (EPSCoR) and the Division of Mathematical Sciences, Professors Karl Booksh and Jocelyn Alcantara-Garcia at the University of Delaware, and Professor Barry Lavine at Oklahoma State University, are collaborating to improve the ability of hand-held chemical sensors for rapid sample classification. The problem is important, for example, for field analysis related to chemical forensics and art conservation, when the observed differences between two or more classes of interest are small compared to the natural variation among samples or among replicate measurements on a single sample. The team is developing advanced statistical and mathematical tools to enable quantitative determination of the statistical confidence with which the reliability of inferences can be assessed. The project entails combining information from two or more disparate sensors in order improve overall performance. Graduate and undergraduate students participating in this interdisciplinary research gain skills in advanced data analysis. These skills are in very high demand.This project is a collaborative effort aimed at investigating fundamental issues important to chemical modeling in modern measurement science: (1) improving classification model efficiency through variable selection, (2) assigning robust confidence levels to classifications that account for non-normal distributions of errors and class memberships, (3) increasing reliability of classification models when information from different sensors is available. The primary measurement tools are hand-held Laser Induced Breakdown Spectroscopy (LIBS) and X-Ray Fluorescence (XRF) data. This project probes the connections among variable selection, data fusion, optimization of instrumental parameters, and the performance of classification models. Targets include real-world classification applications where the class distribution and/or the measurement errors are not normally distributed. Nested bootstraps and genetic algorithms are being employed to solve this multilayered optimization problem. The developed methods will be modified as needed for PLS-DA, ANN-, and KNN-driven classifications. Resulting data sets will be made publicly available.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
With support from the Chemical Measurement & Imaging program in the Division of Chemistry, and partial co-funding from the Established Program to Stimulate Competitive Research (EPSCoR) and the Division of Mathematical Sciences, Professors Karl Booksh and Jocelyn Alcantara-Garcia at the University of Delaware, and Professor Barry Lavine at Oklahoma State University, are collaborating to improve the ability of hand-held chemical sensors for rapid sample classification. 例如,对于与化学取证和艺术保护相关的现场分析,当观察到的两种或多种兴趣类别之间的差异与样品之间的自然变化相比或单个样本上的重复测量之间的差异很小时,问题很重要。 该团队正在开发先进的统计和数学工具,以实现可以评估推论的可靠性的统计信心的定量确定。该项目需要结合两个或多个不同传感器的信息,以提高整体性能。研究生和本科生参加了高级数据分析中的跨学科研究获得技能。 这些技能的需求很高。该项目是一项合作的努力,旨在调查现代测量科学中对化学建模重要的基本问题:(1)通过可变选择提高分类模型效率,(2)将强大的置信度分配给分类,以说明错误和班级成员的非正态分布分布和阶级的可靠性,(3)在各种传感器上增加构图的可靠性。主要的测量工具是手持激光诱导的分解光谱(LIBS)和X射线荧光(XRF)数据。该项目探讨了变量选择,数据融合,仪器参数的优化以及分类模型的性能之间的连接。目标包括实际分类应用程序,其中类别分布和/或测量错误未正态分布。正在使用嵌套的引导程序和遗传算法来解决此多层优化问题。 PLS-DA,ANN-和KNN驱动分类将根据需要修改开发的方法。最终的数据集将公开可用。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响评论标准来评估的值得支持的。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Visualization of confusion matrices with network graphs
- DOI:10.1002/cem.3435
- 发表时间:2022-07
- 期刊:
- 影响因子:2.4
- 作者:W. Gilbraith;Caelin P. Celani;K. Booksh
- 通讯作者:W. Gilbraith;Caelin P. Celani;K. Booksh
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karl Booksh其他文献
Karl Booksh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karl Booksh', 18)}}的其他基金
Scientific Discovery from Chemical Data Analyses
化学数据分析的科学发现
- 批准号:
2011061 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
MRI: Acquisition of a Atomic Force Microscope (AFM)-Raman Microscope
MRI:购买原子力显微镜 (AFM)-拉曼显微镜
- 批准号:
1828325 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
REU Site: Chemical Sciences Leadership Initiative (CSLI)
REU 网站:化学科学领导力倡议 (CSLI)
- 批准号:
1560325 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
REU Site: Chemical Science Leadership Initiative (CSLI)
REU 网站:化学科学领导力倡议 (CSLI)
- 批准号:
1263018 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Surface Plasmon Resonance in the Mid-infrared
合作研究:中红外表面等离子共振
- 批准号:
1111618 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SGER: Single Nanoparticle Surface Plasmon Resonance Imaging
SGER:单纳米粒子表面等离子共振成像
- 批准号:
0918189 - 财政年份:2009
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Smart Sensors for In Situ Monitoring of Hydrothermal Vent Systems
用于热液喷口系统原位监测的智能传感器
- 批准号:
0119999 - 财政年份:2001
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Mixed Electronic and Optical Computing Platforms for Portable Surface Plasmon Resonance Sensors
用于便携式表面等离子共振传感器的混合电子和光学计算平台
- 批准号:
0086947 - 财政年份:2000
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Workshop to Revise 'Teaching Chemistry to Students with Disabilities'
修订“残疾学生化学教学”研讨会
- 批准号:
0079057 - 财政年份:2000
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: In-situ Determination of Pesticides and Other Environmental Pollutants with a Fiber Optic, Surface Resonance Based Sensor
职业:使用基于光纤、表面共振的传感器对农药和其他环境污染物进行原位测定
- 批准号:
9702476 - 财政年份:1997
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
- 批准号:62373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
- 批准号:82372548
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
- 批准号:32302064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research:CDS&E:D3SC:Topology, Rare-event Simulation, and Machine Learning as Routes to Predicting Molecular Crystal Structures and Understanding Their Phase Behav
合作研究:CDS
- 批准号:
2240526 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
D3SC: CDS&E: Collaborative Research: Machine Learning Modeling for the Reactivity of Organic Contaminants in Engineered and Natural Environments
D3SC:CDS
- 批准号:
2105032 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: D3SC: CDS&E: Predictive Discovery of Porphyrin Molecules and their Response Properties using Smart Objects-Enabled Machine Learning
合作研究:D3SC:CDS
- 批准号:
2055668 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
D3SC: CDS&E: Collaborative Research: Machine Learning Modeling for the Reactivity of Organic Contaminants in Engineered and Natural Environments
D3SC:CDS
- 批准号:
2105005 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: D3SC: CDS&E: Predictive Discovery of Porphyrin Molecules and their Response Properties using Smart Objects-Enabled Machine Learning
合作研究:D3SC:CDS
- 批准号:
2055669 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant