Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis

合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)

基本信息

  • 批准号:
    1940291
  • 负责人:
  • 金额:
    $ 30.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

The natural-human world is characterized by highly interconnected systems, in which a single discipline is not equipped to identify broader signs of systemic risk and mitigation targets. For example, what risks in agriculture, ecology, energy, finance and hydrology are heightened by climate variability and change? How might risks in, for example, space weather, be connected with energy, water and finance? Recent advances in computing and data science, and the data revolution in each of these domains have now provided a means to address these questions. The investigators jointly establish the PRISM Cooperative Institute for pioneering the integration of large-scale, multi-resolution, dynamic data across different domains to improve the prediction of risks (potentials for extreme outcomes and system failures). The investigators' vision is to develop a trans-domain framework that harnesses big data in the context of domain expertise to discover new critical risk indicators, holistically identify their interconnections, predict future risks and spillover potential, and to measure systemic risk broadly. The investigators will work with stakeholders to ultimately create early warnings and targets for critical risk mitigation and grow preparedness for devastating events worldwide; form wide and unique partnerships to educate the next generation of data scientists through postdoctoral researcher and student exchanges, research retreats, and workshops; and broaden participation through recruiting and training of those under-represented in STEM, including women and underrepresented minority students, and impact on stakeholder communities via methods, tools and datasets enabled by PRISM Data Library web services.The PRISM Cooperative Institute's data-intensive cross-disciplinary research directions include: (i) Critical Risk Indicators (CRIs); The investigators define CRIs as quantifiable information specifically associated with cumulative or acute risk exposure to devastating, ruinous losses resulting from a disastrous (cumulative) activity or a catastrophic event. PRISM aims to identify critical risks and existing indicators in many domains, and develop new CRIs by harnessing the data revolution; (ii) Dynamic Risk Interconnections; The investigators will dynamically model and forecast CRIs and PRISM aims to robustly identify a sparse, interpretable lead-lag risk dependence structure of critical societal risks, using state-of-the-art methods to accommodate CRI complexities such as nonstationary, spatiotemporal, and multi-resolution attributes; (iii) Systemic Risk Indicators (SRIs); PRISM will model trans-domain systemic risk, by forecasting critical risk spillovers and via the creation of SRIs for facilitating stakeholder intervention analysis; (iv) Validation & Stakeholder Engagement; The investigators will deploy the PRISM analytical framework on integrative case studies with distinct risk exposure (acute versus cumulative) and catastrophe characteristics (immediate versus sustained), and will solicit regular input from key stakeholders regarding critical risks and their decision variables, to better inform their operational understanding of policy versus practice.This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity, and is jointly supported by HDR and the Division of Mathematical Sciences within the NSF Directorate of Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自然与人类世界的特点是系统高度互联,单一学科无法识别更广泛的系统性风险迹象和缓解目标。例如,气候变率和变化加剧了农业、生态、能源、金融和水文领域的哪些风险?例如,太空天气中的风险如何与能源、水和金融联系起来?计算和数据科学的最新进展以及每个领域的数据革命现在都提供了解决这些问题的方法。研究人员共同建立了 PRISM 合作研究所,开创性地整合不同领域的大规模、多分辨率、动态数据,以改进风险(极端结果和系统故障的可能性)的预测。研究人员的愿景是开发一个跨领域框架,在领域专业知识的背景下利用大数据来发现新的关键风险指标,全面识别它们的相互关系,预测未来风险和溢出潜力,并广泛衡量系统性风险。调查人员将与利益相关者合作,最终制定早期预警和缓解关键风险的目标,并加强对全球毁灭性事件的准备;形成广泛而独特的合作伙伴关系,通过博士后研究员和学生交流、研究务虚会和研讨会来教育下一代数据科学家;通过招募和培训 STEM 中代表性不足的人(包括女性和代表性不足的少数族裔学生)来扩大参与,并通过 PRISM 数据库网络服务支持的方法、工具和数据集对利益相关者社区产生影响。 PRISM 合作研究所的数据密集型跨领域研究学科研究方向包括:(i)关键风险指标(CRI);研究人员将 CRI 定义为可量化的信息,特别与灾难性(累积)活动或灾难性事件造成的破坏性、破坏性损失的累积或急性风险暴露相关。 PRISM旨在识别许多领域的关键风险和现有指标,并通过利用数据革命开发新的CRI; (ii) 动态风险关联;研究人员将动态建模和预测 CRI,PRISM 旨在稳健地识别关键社会风险的稀疏、可解释的超前滞后风险依赖结构,使用最先进的方法来适应 CRI 复杂性,例如非平稳、时空和多变量。 -分辨率属性; (iii) 系统性风险指标(SRI); PRISM 将通过预测关键风险溢出并通过创建 SRI 来促进利益相关者干预分析,对跨域系统性风险进行建模; (iv) 验证和利益相关者参与;研究人员将在具有不同风险暴露(急性与累积)和灾难特征(立即与持续)的综合案例研究上部署 PRISM 分析框架,并将定期征求关键利益相关者关于关键风险及其决策变量的意见,以便更好地为他们提供信息。该项目是美国国家科学基金会利用数据革命 (HDR) 大创意活动的一部分,并得到 HDR 和 NSF 理事会数学科学部的共同支持数学和物理科学。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Energon: A Data Acquisition System for Portable Building Analytics
Energon:用于便携式建筑分析的数据采集系统
Selective Sampling for Sensor Type Classification in Buildings
建筑物中传感器类型分类的选择性采样
Critical Risk Indicators (CRIs) for the electric power grid: a survey and discussion of interconnected effects
电网关键风险指标 (CRI):相互关联影响的调查和讨论
  • DOI:
    10.1007/s10669-021-09822-2
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Che;Cousin, Rémi;Daryanto, Stefani;Deng, Grace;Feng, Mei;Gupta, Rajesh K.;Hong, Dezhi;McGranaghan, Ryan M.;Owolabi, Olukunle O.;Qu, Tianyi;et al
  • 通讯作者:
    et al
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rajesh Gupta其他文献

Hybrid DERs enabled residential microgrid system with MVDC and LVDC bus layout facilities
混合分布式能源支持住宅微电网系统,具有 MVDC 和 LVDC 总线布局设施
Intelligent Garlic Routing for Securing Data Exchange in V2X Communication
用于保护 V2X 通信中数据交换的智能 Garlic 路由
  • DOI:
    10.1109/gcwkshps56602.2022.10008525
  • 发表时间:
    2022-12-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Jadav;Rajesh Gupta;S. Tanwar;Pronaya Bhattacharya
  • 通讯作者:
    Pronaya Bhattacharya
Modified hill-top algorithm based maximum power point tracking for solar PV module
基于改进山顶算法的太阳能光伏组件最大功率点跟踪
CT Evaluation of Acute Pancreatitis and its Prognostic Correlation with CT Severity Index.
急性胰腺炎的 CT 评估及其与 CT 严重程度指数的预后相关性。
Promoting school climate and health outcomes with the SEHER multi-component secondary school intervention in Bihar, India: a cluster-randomised controlled trial
通过印度比哈尔邦 SEHER 多组成部分中学干预措施改善学校氛围和健康成果:整群随机对照试验
  • DOI:
    10.1016/s0140-6736(18)31615-5
  • 发表时间:
    2018-12-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sachin Shinde;H. Weiss;B. Varghese;Prachi Kh;eparkar;eparkar;B. Pereira;Amit Sharma;Rajesh Gupta;D. Ross;G. Patton;V. Patel
  • 通讯作者:
    V. Patel

Rajesh Gupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rajesh Gupta', 18)}}的其他基金

BD Spokes: SPOKE: WEST: Collaborative: MetroInsight: Knowledge Discovery and Real-Time Interventions from Sensory Data Flows in Urban Spaces
BD 发言:发言:WEST:协作:MetroInsight:城市空间中感知数据流的知识发现和实时干预
  • 批准号:
    1636879
  • 财政年份:
    2016
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant
CSR:Small:Collaborative Research:EDS: Systems and Algorithmic Support for Managing Complexity in Sensorized Distributed Systems
CSR:小:协作研究:EDS:管理传感器化分布式系统复杂性的系统和算法支持
  • 批准号:
    1526841
  • 财政年份:
    2015
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant
CPS: Frontiers: Collaborative Research: ROSELINE: Enabling Robust, Secure and Efficient Knowledge of Time Across the System Stack
CPS:前沿:协作研究:ROSELINE:在整个系统堆栈中实现稳健、安全和高效的时间知识
  • 批准号:
    1329766
  • 财政年份:
    2014
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Variability-Aware Software for Efficient Computing with Nanoscale Devices
协作研究:利用纳米级设备进行高效计算的可变性感知软件
  • 批准号:
    1029783
  • 财政年份:
    2010
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Continuing Grant
CPS:Small:Collaborative Research:Localization and System Services for SpatioTemporal Actions in Cyber-Physical Systems
CPS:小:协作研究:网络物理系统中时空动作的定位和系统服务
  • 批准号:
    0932360
  • 财政年份:
    2009
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant
Cyber-Physical Systems Week (CPSWeek 2009)
网络物理系统周 (CPSWeek 2009)
  • 批准号:
    0936350
  • 财政年份:
    2009
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Design and Run-time Techniques for Physically Coupled Software
协作研究:物理耦合软件的设计和运行技术
  • 批准号:
    0820034
  • 财政年份:
    2008
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant
Modeling and Optimization of Thermal and Energy Efficient Processing in Multi-Core System-Chips
多核系统芯片热能高效处理的建模和优化
  • 批准号:
    0702792
  • 财政年份:
    2007
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Continuing Grant
U.S.-France Cooperative Research (INRIA): A Semantic Foundation For C++ based IC/System Design
美法合作研究 (INRIA):基于 C 的 IC/系统设计的语义基础
  • 批准号:
    0554678
  • 财政年份:
    2005
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant
Constrained Power and Performance Optimization for Embedded Systems
嵌入式系统的受限功耗和性能优化
  • 批准号:
    0355071
  • 财政年份:
    2003
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Continuing Grant

相似国自然基金

生物质热解气冷凝传热传质的选择性调控机理与预测机制研究
  • 批准号:
    52306283
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向单细胞和空间组学数据的细胞异质性分析和药物反应预测方法研究
  • 批准号:
    62372165
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高速流动性黄土滑坡前缘冲挤效应及致灾范围预测模型研究
  • 批准号:
    42307216
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于CT影像联合病理三级淋巴结构的可解释性智能模型精准预测肝细胞癌切除术后预后的研究
  • 批准号:
    82302315
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
广域残积土滑坡强降雨触发机制与危险性动态预测研究
  • 批准号:
    42301103
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: New Phase Diagrams for Predictive Solvothermal Synthesis in Non-Aqueous Solvents
合作研究:非水溶剂中预测溶剂热合成的新相图
  • 批准号:
    2240282
  • 财政年份:
    2023
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Continuing Grant
Collaborative Research: Scalable Data-Enabled Predictive Control for Heterogeneous Mixed Traffic Systems
协作研究:异构混合流量系统的可扩展数据支持预测控制
  • 批准号:
    2320697
  • 财政年份:
    2023
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant
Belmont Forum Collaborative Research: Climate-Induced Migration in Africa and Beyond: Big Data and Predictive Analytics
贝尔蒙特论坛合作研究:非洲及其他地区气候引起的移民:大数据和预测分析
  • 批准号:
    2310908
  • 财政年份:
    2023
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Continuing Grant
Ideas Lab: Collaborative Research: Integrating cross-kingdom lncRNA genetic and functional interactions to build predictive network models
创意实验室:协作研究:整合跨界 lncRNA 遗传和功能相互作用,构建预测网络模型
  • 批准号:
    2243562
  • 财政年份:
    2023
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant
Individual Multimodal Pathway Statistics for Predicting Treatment Response in Late-life Depression
用于预测晚年抑郁症治疗反应的个体多模式通路统计
  • 批准号:
    10722921
  • 财政年份:
    2023
  • 资助金额:
    $ 30.3万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了