CIF: Medium: Collaborative Research: Theory of Optimization Geometry and Algorithms for Neural Networks

CIF:媒介:协作研究:神经网络优化几何理论和算法

基本信息

  • 批准号:
    2002272
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-15 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Deep learning has attracted a significant amount of interest in recent years due to its widespread applicability in computer vision, artificial intelligence and natural language processing, alongside recent strides in autonomous driving. The theoretical underpinnings behind such success, however, remain elusive to a large extent, hindering its further adoption in other applications. This project aims to advance the theoretical foundations of training neural networks in terms of optimization landscape and algorithmic efficacy, which in turn should have a measurable impact on the practice of deep learning by providing guiding principles for network design, algorithm selection, hyperparameter tuning, and adversarial training. This project adopts an interdisciplinary approach fusing ideas from machine learning, optimization, statistical signal processing, high-dimensional statistics, nonparametric statistics, and information theory. This project will likewise develop courses and tutorials on theoretical foundations of large-scale machine learning and provide extensive training opportunities for students at all levels.This project aims to develop a comprehensive theory to characterize the optimization landscape and geometry of loss functions and algorithmic regularizations of major neural network training problems, and explore how the network architecture---including depth, width, and activation functions---affect these properties, thus providing guidelines for the design of algorithms to train these networks more efficiently with theoretical performance guarantees. The project will explore the geometric properties and their impact on the optimization performance in training multi-layer neural networks, auto-encoders, generative adversarial networks, and adversarial training involving non-convex and saddle-point problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,深度学习因其在计算机视觉、人工智能和自然语言处理方面的广泛适用性以及自动驾驶方面的最新进展而引起了人们的极大兴趣。然而,这种成功背后的理论基础在很大程度上仍然难以捉摸,阻碍了其在其他应用中的进一步采用。该项目旨在在优化景观和算法功效方面推进神经网络训练的理论基础,从而通过为网络设计、算法选择、超参数调整和优化提供指导原则,从而对深度学习实践产生可衡量的影响。对抗性训练。该项目采用跨学科方法,融合了机器学习、优化、统计信号处理、高维统计、非参数统计和信息论的思想。该项目还将开发有关大规模机器学习理论基础的课程和教程,并为各个级别的学生提供广泛的培训机会。该项目旨在开发一种全面的理论来描述损失函数的优化景观和几何以及算法正则化主要的神经网络训练问题,并探索网络架构(包括深度、宽度和激活函数)如何影响这些特性,从而为算法设计提供指导,以在理论性能保证的情况下更有效地训练这些网络。该项目将探索几何特性及其对训练多层神经网络、自动编码器、生成对抗网络以及涉及非凸和鞍点问题的对抗训练中优化性能的影响。该奖项反映了 NSF 的法定使命和通过使用基金会的智力优点和更广泛的影响审查标准进行评估,该项目被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Neural Networks can Learn Representations with Gradient Descent
  • DOI:
    10.48550/arxiv.2206.15144
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexandru Damian;Jason D. Lee;M. Soltanolkotabi
  • 通讯作者:
    Alexandru Damian;Jason D. Lee;M. Soltanolkotabi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Lee其他文献

Spectral Study of the West Jet Lobe of SS 433 with HAWC
使用 HAWC 对 SS 433 西喷气波瓣进行光谱研究
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Rho;A. Albert;R. Alfaro;C. Álvarez;A. Andres;J. C. Arteaga Velázquez;D. Avila Rojas;H. A. Ayala Solares;R. Babu;E. Belmont;Tomás Capistrán Rojas;So;A. Carramiñana;Fernanda Carreon;U. Cotti;J. Cotzomi;S. Coutiño de León;E. de la Fuente;D. Depaoli;C. de León;R. Díaz Hernández;J. C. Díaz Vélez;B. Dingus;M. Durocher;M. DuVernois;K. Engel;María Catalina Espinoza Hernández;Jason Fan;K. Fang;N. Fraija;J. García;F. Garfias;H. Goksu;M. González;J. Goodman;S. Groetsch;J. P. Harding;S. Hernández Cadena;I. Herzog;J. Hinton;B. Hona;Dezhi Huang;F. Hueyotl;P. Hüntemeyer;A. Iriarte;V. Joshi;S. Kaufmann;D. Kieda;A. Lara;Jason Lee;William H. Lee;H. León Vargas;J. Linnemann;A. Longinotti;G. Luis;K. Malone;J. Martínez;J. Matthews;P. Miranda;J. Montes;Jorge Antonio Morales Soto;M. Mostafá;L. Nellen;M. Nisa;R. Noriega;L. Olivera;N. Omodei;Y. Pérez Araujo;Eucario Gonzalo Pérez Pérez;A. Pratts;D. Rosa;E. Ruiz;H. Salazar;D. Salazar;A. Sandoval;Michael Schneider;G. Schwefer;J. Serna;A. Smith;Youngseo Son;W. Springer;O. Tibolla;K. Tollefson;I. Torres;Ramiro Torres Escobedo;Rhiannon M. Turner;F. Ureña;Enrique Varela;Luis Villaseñor;Xiaojie Wang;I. Watson;Felix Werner;K. Whitaker;E. Willox;Hongyi Hongyi Wu;Hao Zhou;K. C. Caballero Mora
  • 通讯作者:
    K. C. Caballero Mora
Horizontal muon track identification with neural networks in HAWC
HAWC 中神经网络的水平 μ 子径迹识别
  • DOI:
    10.22323/1.395.1036
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. R. A. Camacho;A. Abeysekara;A. Albert;R. Alfaro;C. Álvarez;Juan de Dios Álvarez Romero;J. Velazquez;Arun Babu Kollamparambil;D. Rojas;H. A. Solares;R. Babu;V. Baghmanyan;A. Barber;J. González;E. Belmont;S. BenZvi;D. Berley;C. Brisbois;K. Mora;T. Capistrán;A. Carramiñana;S. Casanova;O. Chaparro;U. Cotti;J. Cotzomi;S. León;E. D. L. Fuente;C. D. León;Lorenzo Diaz;R. D. Hernandez;J. Vélez;B. Dingus;M. Durocher;M. DuVernois;R. Ellsworth;K. Engel;María Catalina Espinoza Hernández;Jason Fan;K. Fang;M. F. Alonso;B. Fick;H. Fleischhack;J. L. Flores;N. Fraija;Diego Garcia Aguilar;J. A. García;J. L. García;G. Garcia;F. Garfias;G. Giacinti;H. Goksu;M. González;J. Goodman;J. P. Harding;S. H. Cadena;I. Herzog;J. Hinton;B. Hona;Dezhi Huang;F. Hueyotl;M. Hui;B. Humensky;P. Hüntemeyer;A. Iriarte;A. Jardin;H. Jhee;V. Joshi;D. Kieda;G. Kunde;S. Kunwar;A. Lara;Jason Lee;W. Lee;D. Lennarz;H. L. Vargas;J. Linnemann;A. Longinotti;R. López;G. Luis;J. Lundeen;K. Malone;V. Marandon;O. Martinez;I. Castellanos;Humberto Martínez Huerta;J. Martínez;J. Matthews;J. Mcenery;P. Miranda;Jorge Antonio Morales Soto;E. M. Barbosa;M. Mostafá;A. Nayerhoda;L. Nellen;M. Newbold;M. Nisa;R. Noriega;L. Olivera;N. Omodei;A. Peisker;Y. P. Araujo;E. Pérez;C. Rho;C. Rivière;D. Rosa;E. Ruiz;J. Ryan;H. Salazar;F. Greus;A. Sandoval;Michael Schneider;H. Schoorlemmer;J. Serna;G. Sinnis;A. Smith;W. Springer;P. Surajbali;I. Taboada;M. Tanner;K. Tollefson;I. Torres;Ramiro Torres Escobedo;Rhiannon M. Turner;F. Ureña;Luis Villaseñor;Xiaojie Wang;I. Watson;T. Weisgarber;Felix Werner;E. Willox;Joshua R. Wood;G. Yodh;A. Zepeda;Hao Zhou;Hawc
  • 通讯作者:
    Hawc
The difluoromethylenesulfonic acid group as a monoanionic phosphate surrogate for obtaining PTP1B inhibitors.
二氟亚甲基磺酸基团作为单阴离子磷酸盐替代物,用于获得 PTP1B 抑制剂。
  • DOI:
    10.1016/s0968-0896(02)00062-7
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Carmen Leung;J. Grzyb;Jason Lee;Natalie Meyer;G. Hum;Chenguo Jia;Shifeng Liu;Scott D. Taylor
  • 通讯作者:
    Scott D. Taylor
Symbiotic HW Cache and SW DTLB Prefetching for DRAM/NVM Hybrid Memory
用于 DRAM/NVM 混合内存的共生硬件缓存和软件 DTLB 预取
MOTIVES FOR GOING PUBLIC AND UNDERPRICING: NEW FINDINGS FROM KOREA
上市和抑价的动机:韩国的新发现

Jason Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Lee', 18)}}的其他基金

Collaborative Research: CIF: Medium: MoDL:Toward a Mathematical Foundation of Deep Reinforcement Learning
合作研究:CIF:媒介:MoDL:迈向深度强化学习的数学基础
  • 批准号:
    2212262
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Towards a Theory of Deep Learning
职业:走向深度学习理论
  • 批准号:
    2144994
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CIF: Medium: Collaborative Research: Theory of Optimization Geometry and Algorithms for Neural Networks
CIF:媒介:协作研究:神经网络优化几何理论和算法
  • 批准号:
    1856549
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
REU Site: Interdisciplinary Nanotechnology Traineeship for Next-Generation Energy, Health, Information, and Manufacturing
REU 网站:下一代能源、健康、信息和制造的跨学科纳米技术培训
  • 批准号:
    1560098
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Preparing African American Males for Energy & Education (PAAMEE)
为非洲裔美国男性提供能源做好准备
  • 批准号:
    1614741
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
PURSE: Promoting Underrepresented Girls Involvement in Research, Science, and Energy
PURSE:促进代表性不足的女孩参与研究、科学和能源
  • 批准号:
    0929728
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NSFAYS Math Achievers
NSFAYS 数学成就者
  • 批准号:
    0639725
  • 财政年份:
    2007
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
  • 批准号:
    42377095
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402817
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402816
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF:Medium:Theoretical Foundations of Compositional Learning in Transformer Models
合作研究:CIF:Medium:Transformer 模型中组合学习的理论基础
  • 批准号:
    2403074
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了