CIF: Medium: Collaborative Research: Theory of Optimization Geometry and Algorithms for Neural Networks

CIF:媒介:协作研究:神经网络优化几何理论和算法

基本信息

  • 批准号:
    2002272
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-15 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Deep learning has attracted a significant amount of interest in recent years due to its widespread applicability in computer vision, artificial intelligence and natural language processing, alongside recent strides in autonomous driving. The theoretical underpinnings behind such success, however, remain elusive to a large extent, hindering its further adoption in other applications. This project aims to advance the theoretical foundations of training neural networks in terms of optimization landscape and algorithmic efficacy, which in turn should have a measurable impact on the practice of deep learning by providing guiding principles for network design, algorithm selection, hyperparameter tuning, and adversarial training. This project adopts an interdisciplinary approach fusing ideas from machine learning, optimization, statistical signal processing, high-dimensional statistics, nonparametric statistics, and information theory. This project will likewise develop courses and tutorials on theoretical foundations of large-scale machine learning and provide extensive training opportunities for students at all levels.This project aims to develop a comprehensive theory to characterize the optimization landscape and geometry of loss functions and algorithmic regularizations of major neural network training problems, and explore how the network architecture---including depth, width, and activation functions---affect these properties, thus providing guidelines for the design of algorithms to train these networks more efficiently with theoretical performance guarantees. The project will explore the geometric properties and their impact on the optimization performance in training multi-layer neural networks, auto-encoders, generative adversarial networks, and adversarial training involving non-convex and saddle-point problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,由于其在计算机视觉,人工智能和自然语言处理中的广泛适用性以及最近在自主驾驶方面的进步,深度学习引起了极大的兴趣。但是,这种成功背后的理论基础在很大程度上仍然难以捉摸,阻碍了其在其他应用中的进一步采用。该项目旨在从优化景观和算法效力方面推进训练神经网络的理论基础,这反过来又应通过为网络设计,算法选择,超级参数调整和对抗性培训提供指导性的指导原理来对深度学习实践产生可衡量的影响。该项目采用了一种跨学科的方法,从机器学习,优化,统计信号处理,高维统计,非参数统计和信息理论融合了思想。 This project will likewise develop courses and tutorials on theoretical foundations of large-scale machine learning and provide extensive training opportunities for students at all levels.This project aims to develop a comprehensive theory to characterize the optimization landscape and geometry of loss functions and algorithmic regularizations of major neural network training problems, and explore how the network architecture---including depth, width, and activation functions---affect these properties, thus providing设计算法设计指南,可以通过理论性能保证更有效地培训这些网络。该项目将探索几何特性及其对培训多层神经网络,自动编码器,生成对抗网络以及涉及非convex和鞍点问题的对抗性培训的影响的影响。该奖项反映了NSF的法定任务,并通过评估基金会的范围,反映了NSF的法定任务,并已被评估了基金会的范围。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Neural Networks can Learn Representations with Gradient Descent
  • DOI:
    10.48550/arxiv.2206.15144
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexandru Damian;Jason D. Lee;M. Soltanolkotabi
  • 通讯作者:
    Alexandru Damian;Jason D. Lee;M. Soltanolkotabi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Lee其他文献

The difluoromethylenesulfonic acid group as a monoanionic phosphate surrogate for obtaining PTP1B inhibitors.
二氟亚甲基磺酸基团作为单阴离子磷酸盐替代物,用于获得 PTP1B 抑制剂。
  • DOI:
    10.1016/s0968-0896(02)00062-7
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Carmen Leung;J. Grzyb;Jason Lee;Natalie Meyer;G. Hum;Chenguo Jia;Shifeng Liu;Scott D. Taylor
  • 通讯作者:
    Scott D. Taylor
Horizontal muon track identification with neural networks in HAWC
HAWC 中神经网络的水平 μ 子径迹识别
  • DOI:
    10.22323/1.395.1036
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. R. A. Camacho;A. Abeysekara;A. Albert;R. Alfaro;C. Álvarez;Juan de Dios Álvarez Romero;J. Velazquez;Arun Babu Kollamparambil;D. Rojas;H. A. Solares;R. Babu;V. Baghmanyan;A. Barber;J. González;E. Belmont;S. BenZvi;D. Berley;C. Brisbois;K. Mora;T. Capistrán;A. Carramiñana;S. Casanova;O. Chaparro;U. Cotti;J. Cotzomi;S. León;E. D. L. Fuente;C. D. León;Lorenzo Diaz;R. D. Hernandez;J. Vélez;B. Dingus;M. Durocher;M. DuVernois;R. Ellsworth;K. Engel;María Catalina Espinoza Hernández;Jason Fan;K. Fang;M. F. Alonso;B. Fick;H. Fleischhack;J. L. Flores;N. Fraija;Diego Garcia Aguilar;J. A. García;J. L. García;G. Garcia;F. Garfias;G. Giacinti;H. Goksu;M. González;J. Goodman;J. P. Harding;S. H. Cadena;I. Herzog;J. Hinton;B. Hona;Dezhi Huang;F. Hueyotl;M. Hui;B. Humensky;P. Hüntemeyer;A. Iriarte;A. Jardin;H. Jhee;V. Joshi;D. Kieda;G. Kunde;S. Kunwar;A. Lara;Jason Lee;W. Lee;D. Lennarz;H. L. Vargas;J. Linnemann;A. Longinotti;R. López;G. Luis;J. Lundeen;K. Malone;V. Marandon;O. Martinez;I. Castellanos;Humberto Martínez Huerta;J. Martínez;J. Matthews;J. Mcenery;P. Miranda;Jorge Antonio Morales Soto;E. M. Barbosa;M. Mostafá;A. Nayerhoda;L. Nellen;M. Newbold;M. Nisa;R. Noriega;L. Olivera;N. Omodei;A. Peisker;Y. P. Araujo;E. Pérez;C. Rho;C. Rivière;D. Rosa;E. Ruiz;J. Ryan;H. Salazar;F. Greus;A. Sandoval;Michael Schneider;H. Schoorlemmer;J. Serna;G. Sinnis;A. Smith;W. Springer;P. Surajbali;I. Taboada;M. Tanner;K. Tollefson;I. Torres;Ramiro Torres Escobedo;Rhiannon M. Turner;F. Ureña;Luis Villaseñor;Xiaojie Wang;I. Watson;T. Weisgarber;Felix Werner;E. Willox;Joshua R. Wood;G. Yodh;A. Zepeda;Hao Zhou;Hawc
  • 通讯作者:
    Hawc
Symbiotic HW Cache and SW DTLB Prefetching for DRAM/NVM Hybrid Memory
用于 DRAM/NVM 混合内存的共生硬件缓存和软件 DTLB 预取
Bilateral Atypical Femoral Fracture in a Bisphosphonate-Naïve Patient with Prior Long-Term Denosumab Therapy: A Case Report of the Management Strategy and a Literature Review
既往接受过长期狄诺塞麦治疗的双磷酸盐初治患者的双侧非典型股骨骨折:管理策略病例报告和文献综述
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Kyle Auger;Jason Lee;Ian S. Hong;Jaclyn M. Jankowski;Frank A. Liporace;Richard S. Yoon
  • 通讯作者:
    Richard S. Yoon
MOTIVES FOR GOING PUBLIC AND UNDERPRICING: NEW FINDINGS FROM KOREA
上市和抑价的动机:韩国的新发现

Jason Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Lee', 18)}}的其他基金

Collaborative Research: CIF: Medium: MoDL:Toward a Mathematical Foundation of Deep Reinforcement Learning
合作研究:CIF:媒介:MoDL:迈向深度强化学习的数学基础
  • 批准号:
    2212262
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Towards a Theory of Deep Learning
职业:走向深度学习理论
  • 批准号:
    2144994
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CIF: Medium: Collaborative Research: Theory of Optimization Geometry and Algorithms for Neural Networks
CIF:媒介:协作研究:神经网络优化几何理论和算法
  • 批准号:
    1856549
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
REU Site: Interdisciplinary Nanotechnology Traineeship for Next-Generation Energy, Health, Information, and Manufacturing
REU 网站:下一代能源、健康、信息和制造的跨学科纳米技术培训
  • 批准号:
    1560098
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Preparing African American Males for Energy & Education (PAAMEE)
为非洲裔美国男性提供能源做好准备
  • 批准号:
    1614741
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
PURSE: Promoting Underrepresented Girls Involvement in Research, Science, and Energy
PURSE:促进代表性不足的女孩参与研究、科学和能源
  • 批准号:
    0929728
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NSFAYS Math Achievers
NSFAYS 数学成就者
  • 批准号:
    0639725
  • 财政年份:
    2007
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
  • 批准号:
    72374217
  • 批准年份:
    2023
  • 资助金额:
    41.00 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
  • 批准号:
    12365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402817
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402816
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF:Medium:Theoretical Foundations of Compositional Learning in Transformer Models
合作研究:CIF:Medium:Transformer 模型中组合学习的理论基础
  • 批准号:
    2403074
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了