Rational Points and Asymptotics of Distribution
有理点和分布渐进
基本信息
- 批准号:2001200
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The fundamental question of contemporary number theory, which has also been the fundamental question of number theory for the last two and a half thousand years, is: what can we say about solutions to equations in whole numbers? The PI’s research explores the relation of questions about solutions to equations (in particular, how many solutions certain kinds of equations have) with questions about geometry of certain kinds of spaces; in turn, another side of the PI’s proposed research investigates the ways geometry of high-dimensional spaces can be brought to bear on other problems in mathematics and data science which might not immediately "look like" geometry. The PI’s research is closely entwined with his work as a popularizer of mathematics in print, broadcast, and social media; he is currently working on a book about geometry which will involve some of the funded research.The project covers a wide range of problems in number theory, algebraic geometry, and data science. A central part is the work of PI and collaborators on a theory of height for rational points on algebraic stacks. The definition was pinned down and its properties studied during the previous granting period; during the present period, we will state a general heuristic for asymptotically counting points on stacks of bounded height, and work towards proving new cases. This new conjecture will include as special cases the Malle conjectures (how many number fields are there of discriminant at most X?) and the Batyrev-Manin conjectures (how many solutions are there to a given equation in integers all of which are at most X?) but applies to many new cases besides, and sheds new light even on the classical questions. In particular, our work adds to the developing consensus that we should go beyond heights attached to line bundles and study the variation of heights attached to vector bundles of arbitrary rank, opening up whole new directions of research and revealing new connections between existing sectors of the literature. The project also includes a wide range of problems in other areas, including group theory (an attempt to use the method of “FI-groups” to prove property T for new families of groups, following the breakthrough of Kaluba, Kielak, and Nowak for Out(F_n)), arithmetic statistics (proving new results towards the Bhargava-Kane-Lenstra-Poonen-Rains conjectures on variation of Selmer groups in the function field case), multilinear algebra (understanding the algebraic and convex geometry of the locus of low-slice-rank tensors), and data science (investigation of what popular machine learning protocols do and don’t learn about symmetry from their input).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当代数字理论的基本问题,这也是过去两千年来数字理论的基本问题,是:我们对方程的解决方案的总体数量有何看法? PI的研究探讨了有关方程解决方案的问题的关系(特别是某些方程式有多少解决方案),并具有有关某些空间几何形状的问题;反过来,PI拟议的研究的另一面研究了可以在数学和数据科学领域的其他问题上引起高维空间的几何形状的方式。 Pi的研究与他作为印刷,广播和社交媒体数学的普遍的工作紧密联系在一起。他目前正在研究一本关于几何学的书,该书将涉及一些资助的研究。该项目涵盖了数量理论,代数几何和数据科学的广泛问题。一个中心部分是PI和合作者在代数堆栈中理性点的高度理论的工作。该定义被固定及其在上一个授予期间研究的属性;在目前,我们将陈述一个普遍的启发式启发式方法,以实现有限身高堆栈的不对称计数点,并致力于提供新病例。这项新协议将包括特殊情况,即MALLE协议(最多有多少个数字字段)和Batyrev-Manin的猜想是有判别的(整数中最多都有多少个解决方案的解决方案?特别是,我们的工作增加了发展的共识,即我们应该超出线条捆绑包的高度,并研究任意等级的向量捆绑包的高度变化,打开了全新的研究方向,并揭示了文献的现有领域之间的新联系。 The project also includes a wide range of problems in other areas, including group theory (an attempt to use the method of “FI-groups” to prove property T for new families of groups, following the breakthrough of Kaluba, Kielak, and Nowak for Out(F_n)), arithmetic statistics (proving new results towards the Bhargava-Kane-Lenstra-Poonen-Rains conjectures on variation of Selmer groups in The function field case),多线性代数(了解低坡度量张量的基因座的代数和凸几何形状)和数据科学(对流行的机器学习协议有什么作用,并且不从输入中了解对称性的研究)。该奖项反映了NSF的法定任务,并通过评估了基金会的评估,并通过评估了基金会的范围和广阔的范围。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Intracounty modeling of COVID-19 infection with human mobility: Assessing spatial heterogeneity with business traffic, age, and race
- DOI:10.1073/pnas.2020524118
- 发表时间:2021-06-15
- 期刊:
- 影响因子:11.1
- 作者:Hou, Xiao;Gao, Song;Patz, Jonathan A.
- 通讯作者:Patz, Jonathan A.
Sparsity of Integral Points on Moduli Spaces of Varieties
簇模空间上积分点的稀疏性
- DOI:10.1093/imrn/rnac243
- 发表时间:2022
- 期刊:
- 影响因子:1
- 作者:Ellenberg, Jordan S;Lawrence, Brian;Venkatesh, Akshay
- 通讯作者:Venkatesh, Akshay
Heights on stacks and a generalized Batyrev–Manin–Malle conjecture
堆栈高度和广义的 Batyrev–Manin–Malle 猜想
- DOI:10.1017/fms.2023.5
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ellenberg, Jordan S.;Satriano, Matthew;Zureick-Brown, David
- 通讯作者:Zureick-Brown, David
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jordan Ellenberg其他文献
Jordan Ellenberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jordan Ellenberg', 18)}}的其他基金
Geometry of Arithmetic Statistics and Related Topics
算术统计几何及相关主题
- 批准号:
2301386 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Madison Moduli Weekend - A Conference on Moduli Spaces
麦迪逊 Moduli 周末 - Moduli 空间会议
- 批准号:
1955665 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Stability Phenomena in Number Theory, Algebraic Geometry, and Topology
数论、代数几何和拓扑中的稳定性现象
- 批准号:
1402620 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
EMSW21-RTG: Algebraic Geometry and Number Theory at the University of Wisconsin
EMSW21-RTG:威斯康星大学代数几何和数论
- 批准号:
0838210 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Moduli Spaces and Algebraic Structures in Homotopy Theory
同伦理论中的模空间和代数结构
- 批准号:
0705428 - 财政年份:2007
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Rational points on varieties and non-abelian Galois groups
职业:簇上的有理点和非阿贝尔伽罗瓦群
- 批准号:
0448750 - 财政年份:2005
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Rational points, Galois representations, and fundamental groups
有理点、伽罗瓦表示和基本群
- 批准号:
0401616 - 财政年份:2004
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
点传递超图的同构和连通性问题
- 批准号:12301446
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
双位点金属氧化物催化剂原子级界面调控及锌-空气电池性能研究
- 批准号:22305010
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位点特异性的糖肽鉴定软件的升级与运用
- 批准号:32371334
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
RNF31通过厚壁菌代谢产物3-氧代胆碱酸调控RORγ信号轴抑制Th17细胞分化—溃疡性结肠炎干预新靶点
- 批准号:82360112
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
RIMKLA通过激活BHMT1苏氨酸45位点磷酸化改善脂肪肝同型半胱氨酸和脂质代谢紊乱的机制研究
- 批准号:82300957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Rational Points via Asymptotics and Geometry
职业:通过渐近学和几何学有理点
- 批准号:
1553459 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Nonregular asymptotics under dependence and inference on change points in graphical networks
图网络中变化点的依赖和推理下的非正则渐近
- 批准号:
1308890 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
非線形放物型方程式の解の挙動とメカニズムの解明
阐明非线性抛物型方程解的行为和机制
- 批准号:
11740104 - 财政年份:1999
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
Statistical Model of Mutually Non-intersecting Systems of Balls with High Intensity and Its Application to Environmental Sciences
高强度球互不相交系统统计模型及其在环境科学中的应用
- 批准号:
10640106 - 财政年份:1998
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)