Topological and Dynamical Phenomena in Condensed Matter Systems Detected by Quantum Entanglement

量子纠缠检测凝聚态系统中的拓扑和动力学现象

基本信息

  • 批准号:
    2001181
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThis award supports theoretical research and education on novel properties of quantum materials and associated phenomena. It has been long recognized that quantum mechanics is essential to understand the basic properties of solids. Understanding the distinction between metals and insulators are one example. With recent advances in experimental techniques, a class of materials has emerged for which subtle quantum effects of the system of their many constituent electrons control macroscopic properties that are characteristic of materials. One example of quantum materials are superconductors. At sufficiently low temperature, a quantum mechanical state forms in which electrons behave collectively leading to conduction of electricity with zero resistance. More recently discovered, is another class of quantum materials that are insulators in their bulk but can support zero resistance conduction of electricity along their surfaces and edges. The metallic surface states in these materials, known as topological insulators, are a consequence of the mathematical structure of the wavefunction which describes the many electron quantum state. The field of mathematics known as topology which focuses on geometric properties of an object that are unchanged by deformations, provides useful ways to describe the structure of the wavefunctions of topological phases in quantum materials. It has become clear that quantum materials can exhibit exotic and surprising properties that do not have a counterpart in ordinary materials. Quantum materials can also host exotic quantum mechanical particles that have intrinsic properties that are quite different from free electrons which make them candidates for the implementation of quantum computers. Novel quantum phenomena can also be found in systems far out of the tranquil state of equilibrium. For example, sufficiently complex quantum many-body systems can "forget" their initial quantum states. In these novel quantum condensed matter systems, quantum entanglement provides a conceptual foundation and tools to study many-body quantum systems. When particles are entangled quantum mechanically, they are connected in a way that affecting one particle will affect all the others, even though they may be separated by vast distances. In this project, the PI aims to develop a deeper theoretical understanding of the properties, including nonequilibrium properties, and phenomena associated with quantum materials, particularly in materials with strongly interacting electrons using concepts such as quantum entanglement together along with others that are associated with the emerging field of quantum information theory. In particular, the PI will examine the nature of the intricate quantum entanglement characteristic of topological phases. He will also investigate how quantum entanglement spreads and propagates in complex many-body quantum systems. A thorough understanding of these problems can pave the way to the discovery of new states of quantum matter and associated phenomena that form the foundations of the next generation of technologies based on quantum mechanics. TECHNICAL SUMMARYThis award supports theoretical research and education with the aim to investigate quantum many-body systems that exhibit novel phenomena, focusing on their topological and far out-of-equilibrium properties. The PI plans to develop a many-body framework to study topological phenomena both in and out of equilibrium, and the structure of multiparty quantum entanglement in topological phases of matter. In particular, the PI plans to construct many-body diagnostics for the topological properties of periodically driven quantum systems in the presence of time-reversal and other symmetries. The PI will seek universal descriptions of quantum information scrambling in complex quantum dynamics using various quantum entanglement measures. To carry out the research, the PI will utilize quantum information theoretical concepts and tools that include quantum entanglement, the channel-state duality, and tensor-networks. The proposed research will lead to a deeper understanding of novel phenomena in quantum many-body systems. The knowledge gained contributes to the foundations of future technological innovations based on quantum mechanical effects. Because of the nature of the proposed work, success in these projects will have impact on many areas of theoretical physics, and may connect to concrete numerical works on model Hamiltonians and experiments in condensed matter systems. Students and young researchers are closely integrated into the research activities and will receive unique training at the frontiers of condensed matter theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要该奖项支持有关量子材料新特性及相关现象的理论研究和教育。人们很早就认识到量子力学对于理解固体的基本性质至关重要。了解金属和绝缘体之间的区别就是一个例子。随着实验技术的最新进展,出现了一类材料,其许多组成电子系统的微妙量子效应控制着材料特有的宏观性质。 量子材料的一个例子是超导体。在足够低的温度下,形成量子力学状态,其中电子集体行为导致零电阻导电。最近发现的是另一类量子材料,它们本身是绝缘体,但可以支持沿其表面和边缘的零电阻导电。这些材料中的金属表面态(称为拓扑绝缘体)是描述多电子量子态的波函数数学结构的结果。被称为拓扑的数学领域专注于物体不因变形而改变的几何特性,提供了描述量子材料中拓扑相的波函数结构的有用方法。 很明显,量子材料可以表现出普通材料所没有的奇异和令人惊讶的特性。量子材料还可以容纳奇异的量子力学粒子,这些粒子具有与自由电子截然不同的内在特性,这使得它们成为实现量子计算机的候选材料。新的量子现象也可以在远离平静平衡状态的系统中发现。例如,足够复杂的量子多体系统可以“忘记”它们的初始量子态。在这些新颖的量子凝聚态物质系统中,量子纠缠为研究多体量子系统提供了概念基础和工具。当粒子以量子力学方式纠缠时,它们以一种影响一个粒子就会影响所有其他粒子的方式连接起来,即使它们可能相隔很远的距离。在该项目中,PI 旨在使用量子纠缠等概念以及与量子材料相关的其他概念,对这些特性(包括非平衡特性和与量子材料相关的现象,特别是具有强相互作用电子的材料)进行更深入的理论理解。量子信息论的新兴领域。特别是,PI 将研究拓扑相复杂的量子纠缠特征的本质。 他还将研究量子纠缠如何在复杂的多体量子系统中传播和传播。对这些问题的透彻理解可以为发现量子物质的新状态和相关现象铺平道路,这些现象构成了基于量子力学的下一代技术的基础。技术摘要该奖项支持理论研究和教育,旨在研究表现出新颖现象的量子多体系统,重点关注其拓扑和远非平衡特性。 PI 计划开发一个多体框架来研究平衡态和非平衡态的拓扑现象,以及物质拓扑相中的多方量子纠缠结构。特别是,PI 计划为存在时间反转和其他对称性的周期性驱动量子系统的拓扑特性构建多体诊断。 PI 将使用各种量子纠缠措施寻求复杂量子动力学中量子信息扰乱的通用描述。为了开展这项研究,PI 将利用量子信息理论概念和工具,包括量子纠缠、通道状态对偶性和张量网络。拟议的研究将有助于更深入地理解量子多体系统中的新现象。获得的知识有助于为基于量子力学效应的未来技术创新奠定基础。由于拟议工作的性质,这些项目的成功将对理论物理的许多领域产生影响,并可能与哈密顿量模型的具体数值工作和凝聚态物质系统的实验联系起来。学生和年轻研究人员紧密融入研究活动,并将接受凝聚态理论前沿的独特培训。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-Hermitian boost deformation
  • DOI:
    10.1103/physrevb.108.075108
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Taozhi Guo;K. Kawabata;Ryota Nakai;S. Ryu
  • 通讯作者:
    Taozhi Guo;K. Kawabata;Ryota Nakai;S. Ryu
Emergent dual holographic description as a nonperturbative generalization of the Wilsonian renormalization group
作为威尔逊重正化群的非微扰概括的新兴双全息描述
  • DOI:
    10.1103/physrevd.105.086019
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Kim, Ki-Seok;Ryu, Shinsei;Lee, Kanghoon
  • 通讯作者:
    Lee, Kanghoon
Dynamical quantum phase transitions in Sachdev-Ye-Kitaev Lindbladians
  • DOI:
    10.1103/physrevb.108.075110
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    K. Kawabata;A. Kulkarni;Jiachen Li;Tokiro Numasawa;S. Ryu
  • 通讯作者:
    K. Kawabata;A. Kulkarni;Jiachen Li;Tokiro Numasawa;S. Ryu
Entanglement of local operators and the butterfly effect
  • DOI:
    10.1103/physrevresearch.3.033182
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Jonah Kudler-Flam;M. Nozaki;S. Ryu;Mao Tian Tan
  • 通讯作者:
    Jonah Kudler-Flam;M. Nozaki;S. Ryu;Mao Tian Tan
Lindbladian dynamics of the Sachdev-Ye-Kitaev model
  • DOI:
    10.1103/physrevb.106.075138
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    A. Kulkarni;Tokiro Numasawa;S. Ryu
  • 通讯作者:
    A. Kulkarni;Tokiro Numasawa;S. Ryu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shinsei Ryu其他文献

Perspective to search for sub-eV neutral boson resonances with stimulated laser colliders
用受激激光对撞机寻找亚电子伏特中性玻色子共振的观点
  • DOI:
    10.1140/epjst/e2014-02164-4
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ali Mollabashi;Masahiro Nozaki;Shinsei Ryu;Tadashi Takayanagi;K. Homma
  • 通讯作者:
    K. Homma
金属単結晶表面上での化学過程を見る
查看金属单晶表面的化学过程
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu Nakayama;Shinsei Ryu;Makoto Sakaguchi;Kentaroh Yoshida;村田好正
  • 通讯作者:
    村田好正
A family of super Schrodinger invariant Chern-Simons matter systems
一族超薛定谔不变陈-西蒙斯物质系统
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu Nakayama;Shinsei Ryu;Makoto Sakaguchi;Kentaroh Yoshida
  • 通讯作者:
    Kentaroh Yoshida
Diazotrophic cyanobacteria as the major photoautotrophs during mid-Cretaceous oceanic ano xic events: Nitrogen and carbon isotooic evidence from sedimentary porphyrin
固氮蓝藻是白垩纪中期海洋缺氧事件中主要的光合自养生物:来自沉积物卟啉的氮和碳等位素证据
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shinsei Ryu;Tadashi Takayanagi;Tomonori Ugajin;野田昌晴;Kashiyama Y.
  • 通讯作者:
    Kashiyama Y.
A Characterization of Topological Insulators
拓扑绝缘体的表征
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shinsei Ryu;Yasuhiro Hatsugai;Y. Hatsugai
  • 通讯作者:
    Y. Hatsugai

Shinsei Ryu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shinsei Ryu', 18)}}的其他基金

CAREER: Quantum anomalies and collective dynamics in symmetry-protected topological phases
职业:对称保护拓扑相中的量子异常和集体动力学
  • 批准号:
    1949785
  • 财政年份:
    2017
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
CAREER: Quantum anomalies and collective dynamics in symmetry-protected topological phases
职业:对称保护拓扑相中的量子异常和集体动力学
  • 批准号:
    1455296
  • 财政年份:
    2015
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant

相似国自然基金

复杂Floquet量子系统中的动力学与拓扑现象研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
动力学过程中的衍生拓扑现象
  • 批准号:
    11974331
  • 批准年份:
    2019
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
一维量子体系的Anderson局域化现象和拓扑态的理论研究
  • 批准号:
    11874234
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
小量子系统的动力学研究
  • 批准号:
    11535011
  • 批准年份:
    2015
  • 资助金额:
    280.0 万元
  • 项目类别:
    重点项目
强磁场下电子关联材料的新现象和新机理
  • 批准号:
    U1332209
  • 批准年份:
    2013
  • 资助金额:
    300.0 万元
  • 项目类别:
    联合基金项目

相似海外基金

Construction of ultradiscrete dynamical systems for bifurcation phenomena in nonlinear nonequilibrium systems
非线性非平衡系统中分岔现象的超离散动力系统的构建
  • 批准号:
    22K03442
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynamical Phenomena in Quantum Field Theory and String Theory
量子场论和弦理论中的动力学现象
  • 批准号:
    SAPIN-2022-00018
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Dynamical Phenomena in Quantum Field Theory and String Theory
量子场论和弦理论中的动力学现象
  • 批准号:
    SAPIN-2015-00044
  • 财政年份:
    2021
  • 资助金额:
    $ 33万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Dissecting the mechanisms of immune surveillance and evasion in liver cancer
剖析肝癌免疫监视和逃避的机制
  • 批准号:
    10381134
  • 财政年份:
    2021
  • 资助金额:
    $ 33万
  • 项目类别:
Integrability of dynamical systems that exhibit Laurent phenomena and positivity via algebraic entropy
通过代数熵表现出洛朗现象和正性的动力系统的可积性
  • 批准号:
    20K03692
  • 财政年份:
    2020
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了