Collaborative Research: RI: Medium: A Rigorous, General Framework for Tractable Learning of Large-Scale DAGs from Data

协作研究:RI:Medium:从数据中轻松学习大规模 DAG 的严格通用框架

基本信息

  • 批准号:
    1956330
  • 负责人:
  • 金额:
    $ 39.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-15 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Recent advances in machine learning and artificial intelligence owe much of their success to the development of algorithms that learn complicated relationships and understanding complex phenomena from massive datasets. These algorithms have been successfully applied on a diverse array of applications, including medicine, genetics, robotics, marketing, finance, and, increasingly, in societal applications. Despite their many successes, however, these applications continue to suffer from security, transparency, fairness, and interpretability problems. Many of these practical challenges can be traced back to well-known limitations with respect to interpretability, causality, and false discoveries. At the same time, substantial progress has been made in recent years in our understanding of these practical challenges in relatively simple settings with only a few factors and comparatively simple models. This research seeks to integrate these efforts, in order to provide a flexible framework for flexible, interpretable, causal modeling from high-dimensional, complex datasets. The investigated approach specifically seeks to avoid spurious correlations that commonly appear in complex datasets, while retaining the flexibility of modern machine learning algorithms with an eye towards applications in medicine, biology, and finance.While many applications of machine learning have been driven by impressive advances in complex predictive models, at the same time a need has emerged for models that can extract causal information from massive, unlabeled datasets. Graphical models provide a principled and effective way to uncover this type knowledge from unlabeled data. Although the problem of learning undirected graphs has witnessed a series of remarkable advances over the past decade, directed acyclic graphs (DAGs) that encode directed, potentially causal information, have not benefited from these advances. As a result, there is a pressing need for novel and theoretically sound methods for learning DAGs that can capture complex, asymmetric relationships, reduce model complexity, and most importantly, learn causal relationships for human decision-makers and stakeholders. This project explores a new approach for learning DAGs from data that provides the basis for a general statistical and computational framework, which has been lacking thus far. The technical aims can be divided along three major axes: 1) Developing novel continuous relaxations of the combinatorial optimization problems that arise in structure learning problems, 2) Developing new tools for analyzing the behavior of optimization schemes in highly nonconvex settings, and 3) Theoretical advances in nonparametric causal modeling and its statistical properties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习和人工智能的最新进展很大程度上归功于算法的开发,这些算法可以学习复杂的关系并从海量数据集中理解复杂的现象。这些算法已成功应用于各种应用,包括医学、遗传学、机器人、营销、金融,以及越来越多的社会应用。然而,尽管取得了许多成功,这些应用程序仍然面临安全性、透明度、公平性和可解释性问题。许多这些实际挑战可以追溯到可解释性、因果关系和错误发现方面众所周知的局限性。与此同时,近年来,我们在只有少数因素和相对简单的模型的相对简单的环境中对这些实际挑战的理解取得了实质性进展。这项研究旨在整合这些努力,以便为高维、复杂数据集的灵活、可解释、因果建模提供一个灵活的框架。研究的方法特别旨在避免复杂数据集中常见的虚假相关性,同时保留现代机器学习算法的灵活性,着眼于医学、生物学和金融领域的应用。虽然机器学习的许多应用都是由令人印象深刻的进步推动的在复杂的预测模型中,同时出现了对能够从大量未标记数据集中提取因果信息的模型的需求。图形模型提供了一种原则性且有效的方法来从未标记的数据中揭示此类知识。尽管学习无向图的问题在过去十年中取得了一系列显着的进步,但编码有向、潜在因果信息的有向无环图(DAG)并没有从这些进步中受益。因此,迫切需要新颖且理论上合理的 DAG 学习方法,这些方法可以捕获复杂、不对称的关系,降低模型复杂性,最重要的是,为人类决策者和利益相关者学习因果关系。该项目探索了一种从数据中学习 DAG 的新方法,为迄今为止缺乏的通用统计和计算框架提供了基础。技术目标可分为三个主轴:1)开发结构学习问题中出现的组合优化问题的新颖连续松弛,2)开发用于分析高度非凸设置中优化方案行为的新工具,以及3)理论该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On perfectness in Gaussian graphical models
论高斯图模型的完美性
Optimal estimation of Gaussian DAG models
  • DOI:
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ming Gao;W. Tai;Bryon Aragam
  • 通讯作者:
    Ming Gao;W. Tai;Bryon Aragam
Learning Latent Causal Graphs Via Mixture Oracles
通过混合预言学习潜在因果图
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kivva, B.;Rajendran, G.;Ravikumar, P.;Aragam, B.
  • 通讯作者:
    Aragam, B.
Structure learning in polynomial time: Greedy algorithms, Bregman information, and exponential families
  • DOI:
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Goutham Rajendran;Bohdan Kivva;Ming Gao;Bryon Aragam
  • 通讯作者:
    Goutham Rajendran;Bohdan Kivva;Ming Gao;Bryon Aragam
Fundamental Limits and Tradeoffs in Invariant Representation Learning
不变表示学习的基本限制和权衡
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Zhao, Han;Dan, Chen;Aragam, Bryon;Jaakkola, Tommi S.;Gordon, Geoffrey J.;Ravikumar, Pradeep
  • 通讯作者:
    Ravikumar, Pradeep
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nikhyl Aragam其他文献

Nikhyl Aragam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

跨膜蛋白LRP5胞外域调控膜受体TβRI促钛表面BMSCs归巢、分化的研究
  • 批准号:
    82301120
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Dectin-2通过促进FcεRI聚集和肥大细胞活化加剧哮喘发作的机制研究
  • 批准号:
    82300022
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
藏药甘肃蚤缀β-咔啉生物碱类TβRI抑制剂的发现及其抗肺纤维化作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
TβRI的UFM化修饰调控TGF-β信号通路和乳腺癌转移的作用及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
AKAP3通过其Dual和RI结构域整合多重信号通路调控精子活力和男性育性的机理研究
  • 批准号:
    82171602
  • 批准年份:
    2021
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 39.29万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 39.29万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313131
  • 财政年份:
    2023
  • 资助金额:
    $ 39.29万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 39.29万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 39.29万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了