Madison Moduli Weekend - A Conference on Moduli Spaces

麦迪逊 Moduli 周末 - Moduli 空间会议

基本信息

  • 批准号:
    1955665
  • 负责人:
  • 金额:
    $ 2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-15 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

'Madison Moduli Weekend' is a conference on moduli spaces to be held in Madison, Wisconsin between the 27th and 29th of March, 2020. Moduli spaces are of great significance in algebraic geometry and number theory, and a great number of perspectives have developed in order to study them. This conference aims to bring together a diverse group of mathematicians, ranging from early career graduate students to experts in this field, to discuss the big questions and techniques surrounding the study of moduli spaces. The conference will consist of five plenary lectures as well as multiple short talks by early career mathematicians. More details can be found at the conference website: https://sites.google.com/wisc.edu/madisonmoduliweekend/home.Moduli spaces parametrize families of objects of interest, up to a notion of isomorphism. Their study has motivated the development of many areas in arithmetic and algebraic geometry, in addition to having a significant impact on them. These include, but are not limited to the study of modular curves, Shimura varieties, Hurwitz spaces and the theory of stacks. The goal of this conference is to talk about both the arithmetic and the geometry of moduli spaces. The plenary speakers of this conference study moduli spaces in various contexts, including rational points, vector bundles, the theory of stacks, Brauer groups, K-theory and Hodge theory. Four of the five plenary talks will be preceded by preparatory talks aimed at graduate students and early postdoctoral researchers. The conference is aimed at an audience of mathematicians with a broad interest in algebraic geometry and number theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jordan Ellenberg其他文献

Jordan Ellenberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jordan Ellenberg', 18)}}的其他基金

Geometry of Arithmetic Statistics and Related Topics
算术统计几何及相关主题
  • 批准号:
    2301386
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Rational Points and Asymptotics of Distribution
有理点和分布渐进
  • 批准号:
    2001200
  • 财政年份:
    2020
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Asymptotics for Rational Points
有理点的渐近
  • 批准号:
    1700884
  • 财政年份:
    2017
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Stability Phenomena in Number Theory, Algebraic Geometry, and Topology
数论、代数几何和拓扑中的稳定性现象
  • 批准号:
    1402620
  • 财政年份:
    2014
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Geometric Analytic Number Theory
几何解析数论
  • 批准号:
    1101267
  • 财政年份:
    2011
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
EMSW21-RTG: Algebraic Geometry and Number Theory at the University of Wisconsin
EMSW21-RTG:威斯康星大学代数几何和数论
  • 批准号:
    0838210
  • 财政年份:
    2009
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Moduli Spaces and Algebraic Structures in Homotopy Theory
同伦理论中的模空间和代数结构
  • 批准号:
    0705428
  • 财政年份:
    2007
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
CAREER: Rational points on varieties and non-abelian Galois groups
职业:簇上的有理点和非阿贝尔伽罗瓦群
  • 批准号:
    0448750
  • 财政年份:
    2005
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Rational points, Galois representations, and fundamental groups
有理点、伽罗瓦表示和基本群
  • 批准号:
    0401616
  • 财政年份:
    2004
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant

相似国自然基金

碳纤维/树脂复合材料模量匹配与梯度界面的协同效应及强韧化机制研究
  • 批准号:
    52373080
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于丝素蛋白多孔凝胶的低模量柔性脑电极研究
  • 批准号:
    62301555
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高模量高塑性(CNTs+AlN)/AZ91复合材料的制备及性能调控机理研究
  • 批准号:
    52301198
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
考虑颗粒特征的粗粒土初始剪切模量宏细观分析及混合驱动模型研究
  • 批准号:
    52309173
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高回弹高模量耐疲劳离子皮肤的结构和性能研究
  • 批准号:
    22305033
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
  • 批准号:
    EP/Y037162/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Research Grant
不確定特異性を持つ完全積分可能系の漸近解析・大域解析とmoduli空間の諸相
具有不确定奇点和模空间方面的完全可积系统的渐近分析/全局分析
  • 批准号:
    23K20219
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
大質量星形成の次世代大規模輻射磁気流体シミュレーション
大质量恒星形成的下一代大规模辐射磁流体动力学模拟
  • 批准号:
    24KJ0023
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
中規模量子コンピュータによるセキュアな分散型量子計算の基盤創出
使用中型量子计算机创建安全分布式量子计算平台
  • 批准号:
    24H00071
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
大規模アンサンブルデータを用いた事前放流における治水効果と利水運用リスクの定量化
利用大规模集合数据量化提前泄洪防洪效果和用水作业风险
  • 批准号:
    23K27022
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了