RI: Medium: Learning Task-Specific Representations for Broadly Capable Reinforcement Learning Agents

RI:中:学习具有广泛能力的强化学习代理的特定任务表示

基本信息

  • 批准号:
    1955361
  • 负责人:
  • 金额:
    $ 119.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

While artificially intelligent agents have achieved expert-level performance on some specialized tasks, progress on designing agents that are broadly capable---able to reach adequate performance on a wide range of tasks---remains elusive. One major obstacle is that the sensors and actuators required by a general-purpose agent must be very complex, to support all the different tasks it may be required to solve. The resulting complexity makes decision-making much harder and drastically hinders the effectiveness of such agents. By contrast, agents that do only one thing can be given much simpler inputs and outputs that are carefully designed to be low-dimensional, highly informative, and task-relevant; such agents often demonstrate satisfactory performance. This project posits that a key requirement for generally intelligent agents is the ability to autonomously formulate such representations for themselves---as abstactions over their complex sensor and actuator spaces---and plans to design new algorithms to do so. AI systems with this ability could be re-tasked to solve many different problems without modification, rather than requiring substantial (and often prohibitive) engineering effort for each new application.This project aims to develop new algorithms that enable agents to learn compact, task-specific abstractions of new problems, by combining and extending techniques for discovering high-level actions, discovering perceptual abstractions that support planning with high-level actions, and formally characterizing the complexity and value loss of using those abstractions. The project will: 1) design new algorithms for reward-driven (and therefore task-specific) perceptual- and action-abstraction discovery; 2) enable inter-task abstraction transfer (which avoids having to re-learn abstractions from scratch each time) through new algorithms for learning generalized skills and constructing modular action-perception-abstraction packages, and new theory characterizing the value loss of using such generalized abstractions; and 3) create principled methods for incrementally constructing a library of modular action-perception abstractions and for adaptively recruiting existing action-state abstractions to solve new tasks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robustly Learning Composable Options in Deep Reinforcement Learning
  • DOI:
    10.24963/ijcai.2021/298
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akhil Bagaria;J. Senthil;Matthew Slivinski;G. Konidaris
  • 通讯作者:
    Akhil Bagaria;J. Senthil;Matthew Slivinski;G. Konidaris
Model-based Lifelong Reinforcement Learning with Bayesian Exploration
  • DOI:
    10.48550/arxiv.2210.11579
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haotian Fu;Shangqun Yu;Michael S. Littman;G. Konidaris
  • 通讯作者:
    Haotian Fu;Shangqun Yu;Michael S. Littman;G. Konidaris
Skill Discovery for Exploration and Planning using Deep Skill Graphs
使用深度技能图进行探索和规划的技能发现
Coarse-Grained Smoothness for Reinforcement Learning in Metric Spaces
度量空间中强化学习的粗粒度平滑度
Autonomous Learning of Object-Centric Abstractions for High-Level Planning
用于高层规划的以对象为中心的抽象的自主学习
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George Konidaris其他文献

George Konidaris的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('George Konidaris', 18)}}的其他基金

CAREER: Learning Symbolic Representations for Robot Manipulation
职业:学习机器人操作的符号表示
  • 批准号:
    1844960
  • 财政年份:
    2019
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Continuing Grant
FMitF: Collaborative Research: User-Centered Verification and Repair of Trigger-Action Programs
FMITF:协作研究:以用户为中心的触发操作程序验证和修复
  • 批准号:
    1836948
  • 财政年份:
    2018
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Hidden Parameter Markov Decision Processes: Exploiting Structure in Families of Tasks
RI:小型:协作研究:隐藏参数马尔可夫决策过程:利用任务族中的结构
  • 批准号:
    1717569
  • 财政年份:
    2017
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Standard Grant
Robotics Activities at Association for the Advancement of Artificial Intelligence (AAAI) 2016
2016 年人工智能促进协会 (AAAI) 机器人活动
  • 批准号:
    1600043
  • 财政年份:
    2016
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Standard Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
  • 批准号:
    72374217
  • 批准年份:
    2023
  • 资助金额:
    41.00 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
  • 批准号:
    12365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313149
  • 财政年份:
    2023
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
  • 批准号:
    2312955
  • 财政年份:
    2023
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313150
  • 财政年份:
    2023
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Continuing Grant
RI: Medium: Foundations of Recourse Verification in Machine Learning
RI:媒介:机器学习资源验证的基础
  • 批准号:
    2313105
  • 财政年份:
    2023
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了