CDS&E: Extracting Models from Data - A Novel Data-Driven Simulation Strategy for Reacting Flows

CDS

基本信息

  • 批准号:
    1953350
  • 负责人:
  • 金额:
    $ 45.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Numerical simulation of reacting flows of real systems is computationally challenging because of the large number variables involved. This research will develop a new data-driven modelling approach that directly incorporates information from canonical or reference test cases to extract simplified models with user-defined error limits. In particular, novel machine learning concepts will be used to generate simplified models that are suitable for use in practical, engineering-scale simulations. Such computationally efficient models can have a direct impact in addressing a range of relevant energy and environmental problems, for example oxy-fuel combustion (for easier CO2 capture and sequestration), pollutant and particulate formation in stationary and mobile combustion systems, etc. The techniques developed here are also applicable to other fields where many reaction manifolds or pathways exist such as in plasma physics or atmospheric chemistry.Many systems in nature evolve along manifolds, which are smooth and reduced complexity subspaces of a parameter space which satisfy, often unknown, physical constraints. However, developing models to describe this evolution is challenging. A key challenge to this modeling approach is dealing with the source terms that arise in the reduced order model. These are a reflection of the source terms in the full (high-fidelity) model, but must be well-parameterized by the reduced-order model parameters without causing unphysical behavior like divergence near manifold boundaries and spurious source/sink points. This will harness the power of data science to characterize the geometry of the low-dimensional manifold and use that information to improve the behavior of the derived models. Extracting the low-dimensional model is challenging because it requires identifying a moderate dimensional shape where gridding and meshing techniques which scale exponentially in dimension will fail. This work will instead be limited by properties such as boundary curvature and vector field acceleration which are well-controlled for most physics-defined systems. Moreover, these models will be learned in a robust manner consistent with a simple physical model, in spite of noise in training data which may otherwise result in spurious critical saddle points in the resulting vector field.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于涉及大量变量,对真实系统反应流的数值模拟在计算上具有挑战性。这项研究将开发一种新的数据驱动建模方法,该方法将来自规范或参考测试用例的信息直接合并,以提取具有用户定义的误差限制的简化模型。特别是,新型的机器学习概念将用于生成适合在实用的工程尺度模拟中使用的简化模型。这种计算高效的模型在解决一系列相关的能源和环境问题方面可能会直接影响参数空间的平滑和降低的复杂性子空间满足(通常是未知的物理约束)。 但是,开发描述这一进化的模型具有挑战性。这种建模方法的一个关键挑战是处理减少订单模型中出现的源术语。这些是整个(高保真)模型中源术语的反映,但必须通过减少阶模型参数进行良好的参数,而不会引起非物理行为,例如差异界限附近的差异和虚假的源/下沉点。这将利用数据科学的力量来表征低维歧管的几何形状,并使用该信息来改善派生模型的行为。提取低维模型是具有挑战性的,因为它需要识别中等维的形状,在该形状中,网格和网格划分技术在维度上呈指数尺度会失败。相反,这项工作将受到诸如边界曲率和矢量场加速度之类的属性的限制,这些属性对大多数物理定义的系统得到了很好的控制。此外,尽管训练数据中有噪音,否则这些模型将以可靠的方式与简单的物理模型一致,否则可能会导致产生的矢量领域中的虚假关键鞍点。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估来通过评估来支持的,这是值得的。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Manifold-informed state vector subset for reduced-order modeling
用于降阶建模的流形通知状态向量子集
  • DOI:
    10.1016/j.proci.2022.06.019
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Zdybał, Kamila;Sutherland, James C.;Parente, Alessandro
  • 通讯作者:
    Parente, Alessandro
Batch Multi-Fidelity Active Learning with Budget Constraints
具有预算约束的批量多保真主动学习
Local manifold learning and its link to domain-based physics knowledge
局部流形学习及其与基于领域的物理知识的联系
  • DOI:
    10.1016/j.jaecs.2023.100131
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zdybał, Kamila;D’Alessio, Giuseppe;Attili, Antonio;Coussement, Axel;Sutherland, James C.;Parente, Alessandro
  • 通讯作者:
    Parente, Alessandro
A technique for characterising feature size and quality of manifolds
  • DOI:
    10.1080/13647830.2021.1931715
  • 发表时间:
    2021-06-03
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Armstrong, Elizabeth;Sutherland, James C.
  • 通讯作者:
    Sutherland, James C.
PCAfold 2.0—Novel tools and algorithms for low-dimensional manifold assessment and optimization
PCAfold 2.0——用于低维流形评估和优化的新颖工具和算法
  • DOI:
    10.1016/j.softx.2023.101447
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Zdybał, Kamila;Armstrong, Elizabeth;Parente, Alessandro;Sutherland, James C.
  • 通讯作者:
    Sutherland, James C.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Sutherland其他文献

On improving cybersecurity through memory isolation using systems management mode
利用系统管理模式通过内存隔离提高网络安全
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    James Sutherland
  • 通讯作者:
    James Sutherland
Improving decadal coastal geomorphic predictions: An overview of the iCOASST project
改进十年海岸地貌预测:iCOASST 项目概述
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. J. Nicholls;J. French;H. Burningham;B. van Maanen;A. Payo;James Sutherland;M. Walkden;Gill Thornhill;Jennifer M. Brown;F. Luxford;J. Simm;D. Reeve;Jeff Hall;A. Souza;P. Stansby;L. Amoudry;B. Rogers;Mike Ellis;R. Whitehouse;J. Horrillo;H. Karunarathna;S. Pan;A. Plater;J. Dix;John Barnes;E. Heron
  • 通讯作者:
    E. Heron
ATHEROSCLEROSIS IS COMMON IN ANCIENT HUMANS: RESULTS OF THE HORUS STUDY OF ANCIENT EGYPTIAN MUMMIES
  • DOI:
    10.1016/s0735-1097(11)61416-2
  • 发表时间:
    2011-04-05
  • 期刊:
  • 影响因子:
  • 作者:
    Gregory S. Thomas;Adel H. Allam;Randall C. Thompson;Abdelhalim Nureldin;Gomaa Abdel-maksoud;Ibrahem Badr;Muhammad Al-Tohamy Soliman;Hany Abdel Rahman Amer;M Linda Sutherland;James Sutherland;Michael I. Miyamoto;L Samuel Wann
  • 通讯作者:
    L Samuel Wann
ASSESSMENT OF MISSING LINKS IN ATHEROGENESIS: PILOT STUDY OF GREAT APES AND HUMANS
  • DOI:
    10.1016/s0735-1097(16)31767-3
  • 发表时间:
    2016-04-05
  • 期刊:
  • 影响因子:
  • 作者:
    Randall C. Thompson;L. Wann;Navneet Narula;Jagat Narula;M. Linda Sutherland;James Sutherland;Adel Allam;Christine France;Bruno Frohlich
  • 通讯作者:
    Bruno Frohlich
ATHEROSCLEROSIS AS MANIFEST BY THORACIC AORTIC CALCIUM: INSIGHTS FROM A REMOTE NATIVE POPULATION WITH EXTREMELY LOW LEVELS OF CORONARY ATHEROSCLEROSIS AND TRADITIONAL CV RISK FACTORS
  • DOI:
    10.1016/s0735-1097(18)32226-5
  • 发表时间:
    2018-03-10
  • 期刊:
  • 影响因子:
  • 作者:
    Randall C. Thompson;Benjamin C. Trumble;Michael Gurven;Chris J. Rowan;Katherine M. Walsworth;Frances Neunuebel;Adel H. Allam;Bruno Frohlich;Samuel Wann;David E. Michalik;M. Linda Sutherland;James Sutherland;Guido P. Lombardi;Bret Beheim;Jonathan Steiglitz;Jagat Narula;James K. Min;Caleb Finch;Gregory Thomas;Hillard Kaplan
  • 通讯作者:
    Hillard Kaplan

James Sutherland的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Sutherland', 18)}}的其他基金

Integrated Experimental and Computational Studies Of MILD Oxy-Coal Combustion
轻度富氧煤燃烧的综合实验和计算研究
  • 批准号:
    1704141
  • 财政年份:
    2017
  • 资助金额:
    $ 45.32万
  • 项目类别:
    Standard Grant
US 2013 Combustion Meeting, Park City, Utah May 19-22, 2013
美国 2013 年燃烧会议,犹他州帕克城,2013 年 5 月 19-22 日
  • 批准号:
    1265611
  • 财政年份:
    2013
  • 资助金额:
    $ 45.32万
  • 项目类别:
    Standard Grant
iCOAST: Integrated COASTal Sediment Systems
iCOAST:集成 COASTal 沉积物系统
  • 批准号:
    NE/J00541X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 45.32万
  • 项目类别:
    Research Grant
Genetic Determination of Mouse Profilin I Function
小鼠Profilin I功能的遗传测定
  • 批准号:
    0074199
  • 财政年份:
    2000
  • 资助金额:
    $ 45.32万
  • 项目类别:
    Fellowship Award

相似国自然基金

基于离子液体的膜蛋白质复合物提取新方法构建及在肝癌耐药机制研究中的应用
  • 批准号:
    22304053
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
胶原自组装多孔膜的结构调控机制及其在氨基酸发酵提取中的应用研究
  • 批准号:
    22378160
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
三维特征支持下的兼顾城-乡域适应知识迁移的建筑物精细提取
  • 批准号:
    42371406
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于LiDAR提取植株三维参数的玉米关键生育时期精准监测
  • 批准号:
    42301427
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RI: Small: Extracting Knowledge from Language Models for Decision Making
RI:小型:从语言模型中提取知识以进行决策
  • 批准号:
    2246811
  • 财政年份:
    2023
  • 资助金额:
    $ 45.32万
  • 项目类别:
    Standard Grant
Indicative Data: Extracting 3D Models of Cities from Unavailability and Degradation of Global Navigation Satellite Systems (GNSS)
指示性数据:从全球导航卫星系统 (GNSS) 不可用和退化中提取城市 3D 模型
  • 批准号:
    MR/S01795X/2
  • 财政年份:
    2020
  • 资助金额:
    $ 45.32万
  • 项目类别:
    Fellowship
RI: Small: Extracting and Representing Commonsense Knowledge Using Language Models
RI:小:使用语言模型提取和表示常识知识
  • 批准号:
    2006851
  • 财政年份:
    2020
  • 资助金额:
    $ 45.32万
  • 项目类别:
    Standard Grant
Indicative Data: Extracting 3D Models of Cities from Unavailability and Degradation of Global Navigation Satellite Systems (GNSS)
指示性数据:从全球导航卫星系统 (GNSS) 不可用和退化中提取城市 3D 模型
  • 批准号:
    MR/S01795X/1
  • 财政年份:
    2019
  • 资助金额:
    $ 45.32万
  • 项目类别:
    Fellowship
Extracting Kansei Information and Building Empathy in Consumer Vocabularies Using Connectionist Models
使用联结主义模型提取感性信息并在消费者词汇中建立同理心
  • 批准号:
    19K04887
  • 财政年份:
    2019
  • 资助金额:
    $ 45.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了