EAGER: Real-Time: Collaborative Research: Unified Theory of Model-based and Data-driven Real-time Optimization and Control for Uncertain Networked Systems

EAGER:实时:协作研究:不确定网络系统基于模型和数据驱动的实时优化与控制的统一理论

基本信息

  • 批准号:
    1953049
  • 负责人:
  • 金额:
    $ 5.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

The project seeks to find a common decision-making framework that seamlessly integrates offline data and computing, real-time data and computing, learning, and probabilistic predictive decision. It provides a unified theory of model-based and data-driven real-time optimization and control for uncertain networked systems. Integral Reinforcement Learning holds the key to integrating real-time data-driven methods, model-based methods, and physical constraints. The structure of Integral Reinforcement Learning will be explored to investigate exactly how and where to use Deep Learning neural networks in architectures that have multiple nested learning loops. A probabilistic spatiotemporal scenario data-driven framework will then be developed for multi-scale sequential control of networked engineering systems under uncertainty. The algorithms and tools developed will be used to sculpt optimal power profiles for power electronics converters in a DC distribution network and help mitigate the adverse effects of intermittent sources, uncertain load demand, or faults. The project represents a radical departure from the exiting big data and decision-making research, toward developing autonomous decision-making under uncertainty constructs for systems of growing scales and time critical mission requirements. Algorithms and tools developed can be extended to other smart and connected domains, e.g., air traffic management, networked traffic platoons, and sensor networks. US microgrid capacity is expected to reach 4.3 GW by 2020. DC distribution networks are emerging alternatives to AC distribution ones, and are critical to the scalable integration of renewable energy resources and electrified transportation fleets. Research results will be ported into topics in reinforcement learning, optimal control, networked control systems, data-driven analysis and decision-making, and power electronics systems. This project synergizes research activities between University of Texas at Arlington (UTA) and Texas A&M-Corpus Christi (TAMUCC), both HBCU/MI Hispanic Serving Institutions, and involves students from Electrical Engineering and Computer Science backgrounds.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目寻求找到一个通用的决策框架,无缝集成离线数据和计算、实时数据和计算、学习和概率预测决策。它为不确定网络系统提供了基于模型和数据驱动的实时优化和控制的统一理论。整体强化学习掌握着集成实时数据驱动方法、基于模型的方法和物理约束的关键。将探索整体强化学习的结构,以准确研究在具有多个嵌套学习循环的架构中如何以及在何处使用深度学习神经网络。然后将开发一个概率时空场景数据驱动框架,用于不确定性下网络工程系统的多尺度顺序控制。开发的算法和工具将用于为直流配电网络中的电力电子转换器塑造最佳功率曲线,并帮助减轻间歇性电源、不确定的负载需求或故障的不利影响。该项目与现有的大数据和决策研究截然不同,致力于在不确定性结构下为规模不断扩大和时间关键任务要求的系统开发自主决策。 开发的算法和工具可以扩展到其他智能和互联领域,例如空中交通管理、网络交通队列和传感器网络。到 2020 年,美国微电网容量预计将达到 4.3 吉瓦。直流配电网络是交流配电网络的新兴替代品,对于可再生能源资源和电气化运输车队的可扩展整合至关重要。研究成果将被移植到强化学习、最优控制、网络控制系统、数据驱动分析和决策以及电力电子系统等领域。该项目协同了德克萨斯大学阿灵顿分校 (UTA) 和德克萨斯农工大学科珀斯克里斯蒂分校 (TAMUCC) 之间的研究活动,这两个机构都是 HBCU/MI 西班牙裔服务机构,并涉及来自电气工程和计算机科学背景的学生。该奖项反映了 NSF 的法定使命和通过使用基金会的智力优点和更广泛的影响审查标准进行评估,该项目被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-Agent Reinforcement Learning Based Coded Computation for Mobile Ad Hoc Computing
Automated Playbook for UAV Traffic Management Based on Spatiotemporal Scenario Data
基于时空场景数据的无人机交通管理自动化手册
  • DOI:
    10.1142/s2301385022500145
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    He, Chenyuan;Wan, Yan;Xie, Junfei
  • 通讯作者:
    Xie, Junfei
Safe Path Planning for Unmanned Aerial Vehicle under Location Uncertainty
Multi-Regional Coverage Path Planning for Robots with Energy Constraint
Coding for Distributed Multi-Agent Reinforcement Learning
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Junfei Xie其他文献

Strategic air traffic flow management under uncertainties using scalable sampling-based dynamic programming and Q-learning approaches
使用可扩展的基于采样的动态规划和 Q 学习方法在不确定性下进行战略空中交通流量管理
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junfei Xie;Yan Wan;F. Lewis
  • 通讯作者:
    F. Lewis
Understanding Long-Term Adoption and Usability of Wearable Activity Trackers Among Active Older Adults
  • DOI:
    10.1007/978-3-030-22012-9_18
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Byung Cheol Lee;Ajisafe, Toyin D.;Junfei Xie
  • 通讯作者:
    Junfei Xie
Landing Trajectory Prediction for UAS Based on Generative Adversarial Network
基于生成对抗网络的无人机着陆轨迹预测
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jun Xiang;Junfei Xie;Jun Chen
  • 通讯作者:
    Jun Chen
A Jump-Linear Model based Sensitivity Study for Optimal Air Traffic Flow Management under Weather Uncertainty
基于跳跃线性模型的天气不确定性下最佳空中交通流量管理的敏感性研究
  • DOI:
    10.2514/6.2015-1573
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yi Zhou;Junfei Xie;Y. Wan
  • 通讯作者:
    Y. Wan
Distance Measure to Cluster Spatiotemporal Scenarios for Strategic Air Traffic Management
战略空中交通管理中聚类时空场景的距离测量
  • DOI:
    10.2514/1.i010353
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junfei Xie;Y. Wan;Yi Zhou;S. Tien;Erik Vargo;C. Taylor;C. Wanke
  • 通讯作者:
    C. Wanke

Junfei Xie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Junfei Xie', 18)}}的其他基金

Collaborative Research: Research Infrastructure: CCRI: ENS: Enhanced Open Networked Airborne Computing Platform
合作研究:研究基础设施:CCRI:ENS:增强型开放网络机载计算平台
  • 批准号:
    2235159
  • 财政年份:
    2023
  • 资助金额:
    $ 5.09万
  • 项目类别:
    Standard Grant
CAREER: Towards Networked Airborne Computing in Uncertain Airspace: A Control and Networking Facilitated Distributed Computing Framework
职业:走向不确定空域的网络机载计算:控制和网络促进的分布式计算框架
  • 批准号:
    2048266
  • 财政年份:
    2021
  • 资助金额:
    $ 5.09万
  • 项目类别:
    Continuing Grant
CI-New: Collaborative Research: Developing an Open Networked Airborne Computing Platform
CI-New:协作研究:开发开放式网络机载计算平台
  • 批准号:
    1953048
  • 财政年份:
    2019
  • 资助金额:
    $ 5.09万
  • 项目类别:
    Standard Grant
EAGER: Real-Time: Collaborative Research: Unified Theory of Model-based and Data-driven Real-time Optimization and Control for Uncertain Networked Systems
EAGER:实时:协作研究:不确定网络系统基于模型和数据驱动的实时优化与控制的统一理论
  • 批准号:
    1839707
  • 财政年份:
    2018
  • 资助金额:
    $ 5.09万
  • 项目类别:
    Standard Grant
CI-New: Collaborative Research: Developing an Open Networked Airborne Computing Platform
CI-New:协作研究:开发开放式网络机载计算平台
  • 批准号:
    1730589
  • 财政年份:
    2017
  • 资助金额:
    $ 5.09万
  • 项目类别:
    Standard Grant

相似国自然基金

己酸二元发酵体系中甲烷菌促进己酸生成的机制研究
  • 批准号:
    31501461
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
体数据表达与绘制的新方法研究
  • 批准号:
    61170206
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
多维马氏体的数学建模及其高精度数值模拟方法
  • 批准号:
    11171218
  • 批准年份:
    2011
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目
基于孢子捕捉器和实时定量PCR技术的空气中小麦白粉菌的监测技术研究
  • 批准号:
    31171793
  • 批准年份:
    2011
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目
mRNA推断皮肤损伤时间的多因子与多因素实验研究
  • 批准号:
    81172902
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

EAGER: Building a Provable Differentially Private Real-time Data-blind ML Algorithm: A case study on Enhancing STEM Student Engagement in Online Learning
EAGER:构建可证明的差分隐私实时数据盲机器学习算法:关于增强 STEM 学生在线学习参与度的案例研究
  • 批准号:
    2329919
  • 财政年份:
    2023
  • 资助金额:
    $ 5.09万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
  • 批准号:
    2405142
  • 财政年份:
    2023
  • 资助金额:
    $ 5.09万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
  • 批准号:
    2151021
  • 财政年份:
    2022
  • 资助金额:
    $ 5.09万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
  • 批准号:
    2151022
  • 财政年份:
    2022
  • 资助金额:
    $ 5.09万
  • 项目类别:
    Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Inoculation vs. education: the role of real time alerts and end-user overconfidence
EAGER:DCL:SaTC:实现跨学科协作:接种与教育:实时警报和最终用户过度自信的作用
  • 批准号:
    2210198
  • 财政年份:
    2022
  • 资助金额:
    $ 5.09万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了