NeTS: Large: Collaborative Research: GigaNets: A Path to Experimental Research in Millimeter Wave Networking
NeTS:大型:协作研究:GigaNets:毫米波网络实验研究之路
基本信息
- 批准号:1952942
- 负责人:
- 金额:$ 27.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-03-15 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Wireless communication technologies such as cellular and WiFi are indispensable for modern society. However, existing wireless networks are under severe stress due to the explosive demand caused by smart mobile devices capable of creating and consuming large amounts of multimedia content (especially images and video). Meeting these demands is estimated to require 1000-fold increases in wireless network capacity, which cannot be obtained by incremental advances using existing spectrum. A promising approach for delivering the required revolutionary advances in wireless by employ the so-called 'millimeter (mm) wave' band, which has huge amounts of available spectrum (e.g., 7 GHz in the unlicensed 60 GHz band alone). The wavelength in these bands is an order of magnitude smaller than that in today's wireless networks, drastically changing the physical and propagation characteristics: for example, mm waves are easily blocked by obstacles such as human bodies, but steerable antenna arrays with a very large number of elements (up to 1000) can fit in compact form factors, enabling us to potentially steer around obstacles using bounces from reflectors. As a consequence, realizing the potential for mm wave communication requires a comprehensive reexamination of existing wireless design principles, using an interdisciplinary approach that goes all the way from antenna design to network protocols. The goal of this project is to take such an approach for establishing fundamental principles for design of next generation mm wave communication networks, with a research agenda combining cross-layer modeling, design, and performance evaluation, firmly grounded in experiment. A key technical issue is to how to efficiently adapt electronically steerable arrays with a large number of elements, and to integrate them into network protocols.The research is driven by the following cutting edge system concepts: (a) Cellular 1000X, aimed at relieving the cellular capacity bottleneck via 60 GHz cellular links delivering Gbps data rates to the mobile, together with a seamless extension to indoor networks; (b) 'Wireless fiber' backhaul at 140 GHz for enabling Cellular 1000X, based on easy to deploy outdoor wireless mesh networks with link speeds approaching 40-100 Gbps; (c) 40 Gbps indoor 60 GHz links, aimed at going beyond nascent industry efforts such as NG60 that aim to upgrade link speeds in the recently developed IEEE 802.11ad wireless local area network standard. The goal of this project is to design a system that will achieve the stated objectives, and prototype an advanced proof-of-concept that will help pave the way for eventual technology transfer leveraging the close ties of the project team to industry. A 60 GHz experimental platform developed to support the research will be made available to the research community, to stimulate a broader academic effort in this area. Due to the small carrier wavelengths, beamforming at both ends is critical to make the link budget work, but it is essential to make the beams electronically steerable to steer around obstacles (which ``look bigger at smaller wavelengths''), and to allow automatic network configuration. Cross-layer frameworks for resilient pencil beam networking for both Cellular 1000X and indoor WLANs will be developed and demonstrated. These will incorporate compressive array adaptation techniques, a core innovation to be demonstrated in this project. Compressive adaptation enables 3D beamforming for robust link budgets, steering around blockage, and spatial reuse, and enables scaling of both the number of antenna elements and the nodes in the network, unlike existing scan-based IEEE 802.11ad medium access control (MAC) techniques. System concepts to be designed and tested include (a) `Picocloud' network architectures that employ tight coordination between base stations and APs (for outdoor and indoor environments, respectively) to provide seamless connectivity in the face of blockage; (b) Integration of beamforming with spatial multiplexing in LoS or near-LoS environments, demonstrating the scaling of available degrees of freedom with carrier frequency through prototypes at 60 GHz and 140 GHz.A reconfigurable phased array at 60 GHz will be developed and integrated with the NSF/CRI-funded WiMi software defined radio platform, in order to enable the preceding system-level explorations (while beamsteering ICs developed by industry have been incorporated into products, external control of the beamsteering coefficients is not available). In addition, a hardware testbed for LoS spatial multiplexing at 140 GHz will be developed to demonstrate the potential for 'wireless fiber' backhaul links beyond 100 GHz.
蜂窝和WiFi等无线通信技术是现代社会不可或缺的。然而,由于能够创建和消费大量多媒体内容(尤其是图像和视频)的智能移动设备带来的爆炸性需求,现有无线网络面临着巨大的压力。 据估计,满足这些需求需要无线网络容量增加 1000 倍,而这无法通过使用现有频谱的渐进式进步来实现。这是一种通过使用所谓的“毫米波”频段实现无线领域所需的革命性进步的有前途的方法,该频段拥有大量可用频谱(例如,仅在未经许可的 60 GHz 频段中就有 7 GHz)。 这些频段的波长比当今无线网络的波长小一个数量级,极大地改变了物理和传播特性:例如,毫米波很容易被人体等障碍物阻挡,但数量非常多的可操纵天线阵列元素(最多 1000 个)可以容纳在紧凑的外形尺寸中,使我们能够利用反射器的反射绕过障碍物。 因此,要实现毫米波通信的潜力,需要使用从天线设计到网络协议的跨学科方法,对现有的无线设计原理进行全面的重新审视。 该项目的目标是采用这种方法来建立下一代毫米波通信网络设计的基本原则,其研究议程结合了跨层建模、设计和性能评估,并以实验为基础。 一个关键的技术问题是如何有效地适应具有大量元件的电子可操纵阵列,并将它们集成到网络协议中。这项研究是由以下尖端系统概念驱动的:(a) Cellular 1000X,旨在缓解蜂窝容量瓶颈,通过 60 GHz 蜂窝链路向移动设备提供 Gbps 数据速率,并无缝扩展到室内网络; (b) 140 GHz 的“无线光纤”回程,用于实现蜂窝 1000X,基于易于部署的室外无线网状网络,链路速度接近 40-100 Gbps; (c) 40 Gbps 室内 60 GHz 链路,旨在超越 NG60 等新兴行业努力,NG60 旨在升级最近开发的 IEEE 802.11ad 无线局域网标准中的链路速度。该项目的目标是设计一个能够实现既定目标的系统,并制作先进的概念验证原型,这将有助于利用项目团队与行业的密切联系为最终的技术转让铺平道路。为支持该研究而开发的 60 GHz 实验平台将提供给研究界,以刺激该领域更广泛的学术努力。 由于载波波长较小,两端的波束成形对于链路预算发挥作用至关重要,但必须使光束能够以电子方式操纵以绕过障碍物(“在较小的波长下看起来更大”),并允许自动网络配置。将开发和演示适用于 Cellular 1000X 和室内 WLAN 的弹性笔形波束网络的跨层框架。 这些将结合压缩阵列适应技术,这是该项目将展示的核心创新。 与现有基于扫描的 IEEE 802.11ad 介质访问控制 (MAC) 技术不同,压缩自适应可实现 3D 波束成形,实现稳健的链路预算、绕过阻塞和空间复用,并可扩展网络中天线元件和节点的数量。待设计和测试的系统概念包括 (a) “Picocloud”网络架构,该架构采用基站和接入点(分别针对室外和室内环境)之间的紧密协调,以在遇到阻塞时提供无缝连接; (b) 在视距或近视距环境中将波束成形与空间复用相集成,通过 60 GHz 和 140 GHz 原型展示可用自由度随载波频率的缩放。将开发 60 GHz 的可重构相控阵,并将其与NSF/CRI资助的WiMi软件定义无线电平台,以实现前面的系统级探索(同时工业界开发的波束控制IC已融入到产品中,波束控制的外部控制系数不可用)。 此外,还将开发用于 140 GHz 的 LoS 空间复用的硬件测试台,以展示超过 100 GHz 的“无线光纤”回程链路的潜力。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
3D Point Cloud Generation with Millimeter-Wave Radar
- DOI:10.1145/3432221
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Kun Qian;Zhaoyuan He-;Xinyu Zhang
- 通讯作者:Kun Qian;Zhaoyuan He-;Xinyu Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xinyu Zhang其他文献
An Anti-Tumor Peptide from Musca domestica Pupae (MATP) Induces Apoptosis in Human Liver Cancer Cells HepG2 Cells Through a ROS-JNK Pathway
家蝇蛹 (MATP) 的抗肿瘤肽通过 ROS-JNK 途径诱导人肝癌细胞 HepG2 细胞凋亡
- DOI:
10.1007/s10989-016-9541-9 - 发表时间:
2017 - 期刊:
- 影响因子:2.5
- 作者:
Dai Cheng;M. Meng;Xinyu Zhang;Chunling Wang - 通讯作者:
Chunling Wang
Low-Complexity optimization for Direction-of-Arrival Estimation via Approximate Message Passing
通过近似消息传递进行到达方向估计的低复杂度优化
- DOI:
10.23919/eusipco.2019.8902519 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Xinyu Zhang;K. Huo;Shuanghui Zhang;Yongxiang Liu;Weidong Jiang;Xiang Li - 通讯作者:
Xiang Li
A note on chiral trace relations from qq-characters
关于QQ字符的手性迹关系的注记
- DOI:
10.1007/jhep04(2020)026 - 发表时间:
2019 - 期刊:
- 影响因子:5.4
- 作者:
Saebyeok Jeong;Xinyu Zhang - 通讯作者:
Xinyu Zhang
PAPMAS: A Novel Prototype System for Parallel Application Performance Monitor and Analysis
PAPMAS:用于并行应用程序性能监控和分析的新型原型系统
- DOI:
10.4156/ijact.vol3.issue8.8 - 发表时间:
2011-09 - 期刊:
- 影响因子:0
- 作者:
Kai Hu;Yi Ding;Tao Gao;Xinyu Zhang;Shu Jiang - 通讯作者:
Shu Jiang
Research on Optimal Hydroelectric Power Generation Balance Problem Based on Particle Swarm Optimization
- DOI:
10.1109/epee59859.2023.10352071 - 发表时间:
2023-09 - 期刊:
- 影响因子:0
- 作者:
Xinyu Zhang - 通讯作者:
Xinyu Zhang
Xinyu Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xinyu Zhang', 18)}}的其他基金
NSF Convergence Accelerator Track L: An Integrated and Miniaturized Opioid Sensor System: Advancing Evidence-Based Strategies for Addressing the Opioid Crisis
NSF 融合加速器轨道 L:集成和小型化阿片类药物传感器系统:推进解决阿片类药物危机的循证策略
- 批准号:
2344344 - 财政年份:2024
- 资助金额:
$ 27.26万 - 项目类别:
Standard Grant
Effective Strategies to Recruit Underserved Students to Baccalaureate Engineering Success and Transition Programs (Recruit-BEST)
招募服务不足的学生参加学士学位工程成功和过渡计划的有效策略(Recruit-BEST)
- 批准号:
2320120 - 财政年份:2023
- 资助金额:
$ 27.26万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Scalable Metasurface Array for mmWave Communication and Sensing
合作研究:NeTS:Medium:用于毫米波通信和传感的可扩展超表面阵列
- 批准号:
2312715 - 财政年份:2023
- 资助金额:
$ 27.26万 - 项目类别:
Continuing Grant
Collaborative Research:SWIFT: Exploiting Application Semantics in Intelligent Cross-Layer Design to Enhance End-to-End Spectrum Efficiency
合作研究:SWIFT:利用智能跨层设计中的应用语义来提高端到端频谱效率
- 批准号:
2128588 - 财政年份:2021
- 资助金额:
$ 27.26万 - 项目类别:
Standard Grant
CNS Core: Medium: Networked Smart Paper: Towards Invisible Wearables for Humans and Things
CNS 核心:媒介:网络智能纸:迈向人类和事物的隐形可穿戴设备
- 批准号:
1901048 - 财政年份:2019
- 资助金额:
$ 27.26万 - 项目类别:
Continuing Grant
CCRI: ENS: Enhancing a Millimeter-Wave Massive MIMO Platform to Support the 5G V2X Networking and Automotive Sensing Research Community
CCRI:ENS:增强毫米波大规模 MIMO 平台以支持 5G V2X 网络和汽车传感研究社区
- 批准号:
1925767 - 财政年份:2019
- 资助金额:
$ 27.26万 - 项目类别:
Standard Grant
CAREER: Scalable Distributed MIMO: Towards Density-Proportional Capacity Scaling for Infrastructure Wireless Networks
职业:可扩展分布式 MIMO:实现基础设施无线网络的密度比例容量扩展
- 批准号:
1854472 - 财政年份:2018
- 资助金额:
$ 27.26万 - 项目类别:
Continuing Grant
NeTS: Small: Collaborative Research: Fine-Grained Spectrum Access for Carrier-Aggregation Based Wireless Networks
NeTS:小型:协作研究:基于载波聚合的无线网络的细粒度频谱接入
- 批准号:
1954608 - 财政年份:2018
- 资助金额:
$ 27.26万 - 项目类别:
Standard Grant
NeTS: Small: Collaborative Research: Fine-Grained Spectrum Access for Carrier-Aggregation Based Wireless Networks
NeTS:小型:协作研究:基于载波聚合的无线网络的细粒度频谱接入
- 批准号:
1617321 - 财政年份:2016
- 资助金额:
$ 27.26万 - 项目类别:
Standard Grant
NeTS: Large: Collaborative Research: GigaNets: A Path to Experimental Research in Millimeter Wave Networking
NeTS:大型:协作研究:GigaNets:毫米波网络实验研究之路
- 批准号:
1518728 - 财政年份:2015
- 资助金额:
$ 27.26万 - 项目类别:
Continuing Grant
相似国自然基金
开发区跨界合作网络的形成机理与区域效应:以三大城市群为例
- 批准号:42301183
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于fMRI大尺度时变网络变异性的个体ERP波形预测研究
- 批准号:82372084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
大环超分子对有机污染物及其降解中间体的自由基激发与诱导机制
- 批准号:52370168
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
抵挡汤早期干预抑制外膜滋养血管新生减轻血管钙化延缓2型糖尿病大血管病变发生的作用机制研究
- 批准号:82374247
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
利用衬底轨道过滤效应构筑大能隙二维拓扑绝缘体的研究
- 批准号:12304199
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
- 批准号:
2312711 - 财政年份:2023
- 资助金额:
$ 27.26万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
- 批准号:
2312710 - 财政年份:2023
- 资助金额:
$ 27.26万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
- 批准号:
2312709 - 财政年份:2023
- 资助金额:
$ 27.26万 - 项目类别:
Standard Grant
NeTS: Large: Collaborative Research: Design Principles for a Future-Proof Internet Control Plane
NetS:大型:协作研究:面向未来的互联网控制平面的设计原则
- 批准号:
2202649 - 财政年份:2021
- 资助金额:
$ 27.26万 - 项目类别:
Continuing Grant
NeTS: Large: Collaborative Research: ASTRO: A Platform for 3-D Data-Driven Mobile Sensing via Networked Drones
NeTS:大型:协作研究:ASTRO:通过联网无人机进行 3D 数据驱动的移动传感平台
- 批准号:
1801865 - 财政年份:2018
- 资助金额:
$ 27.26万 - 项目类别:
Continuing Grant