FRG : Collaborative Research : Pseudorandomness in Ramsey Theory
FRG:协作研究:拉姆齐理论中的伪随机性
基本信息
- 批准号:1952786
- 负责人:
- 金额:$ 62.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ramsey theory refers to a large body of deep results in mathematics which have a common theme: find uniform substructures in large combinatorial structures. It is now one of the most central areas in modern combinatorics. The subject was founded by Frank Ramsey in 1930 while studying the decidability of logical systems and his foundational result is now known as Ramsey’s theorem. His theorem was rediscovered in 1935 by Paul Erdos and George Szekeres while studying a seemingly unrelated geometric question. Given these diverse origins, it is not surprising that Ramsey’s theorem has had a wide range of applications in other areas of mathematics including logic, geometry, number theory, and theoretical computer science.The goal of this focused research group is to obtain new bounds for classical Ramsey numbers. The group will use a wide range of tools and techniques in the area including the probabilistic method, the stepping-up lemma, and the theory of pseudorandom graphs. Very recently, Mubayi and Verstraete established a surprising connection between the Ramsey numbers and pseudorandom graphs based on the work of Alon and Rodl, thus moving the emphasis of the field from random graphs to pseudorandom graphs. Moreover, substantial progress has recently been made on hypergraph Ramsey numbers, where we now know the tower growth rate for many of these numbers. It is expected that further work on these problems will lead to new methods and applications as well. Finally, a substantial number of students and early-career researchers will be trained and supported, and the collaborative results arising from the research will be disseminated widely at conferences, workshops and via publications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
拉姆西理论是指具有共同主题的数学深度结果:在大型组合结构中找到统一的子结构。现在,它是现代组合学中最中心的地区之一。该主题是由弗兰克·拉姆齐(Frank Ramsey)于1930年研究的,同时研究了逻辑系统的可决定性,而他的基本结果现在被称为拉姆齐(Ramsey)的定理。在研究一个看似无关的几何问题时,保罗·埃多斯(Paul Erdos)和乔治·塞克雷斯(George Szekeres)于1935年重新发现了他的定理。鉴于这些潜水员的起源,Ramsey的定理在其他数学领域都有广泛的应用并不奇怪,包括逻辑,几何,数字,数量理论和理论计算机科学。这个重点研究小组的目标是为经典的Ramsey数字获得新的界限。该小组将在该区域中使用各种工具和技术,包括概率方法,加速引理和伪图理论。最近,Mubayi和Verstraete基于Alon和Rodl的工作建立了Ramsey数字和伪数图之间的惊喜联系,从而将田地的重点从随机图移到了伪随机图。此外,最近在Hypergraph Ramsey数字上取得了巨大进展,我们现在知道许多此类数字的塔楼增长率。预计这些问题的进一步工作也将导致新的方法和应用。最后,将对许多学生和早期研究人员进行培训和支持,而研究所带来的协作结果将在会议,研讨会和通过出版物中广泛传播。该奖项反映了NSF的法定任务,并通过评估该基金会的知识分子功能和广泛的影响来评估NSF的法定任务,并被认为是诚实的支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sunflowers in Set Systems of Bounded Dimension
有界维集合系统中的向日葵
- DOI:10.4230/lipics.socg.2021.37
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Fox, Jacob;Pach, Janos;Suk, Andrew
- 通讯作者:Suk, Andrew
Cliques with many colors in triple systems
三重系统中具有多种颜色的派系
- DOI:10.4310/joc.2021.v12.n4.a2
- 发表时间:2021
- 期刊:
- 影响因子:0.3
- 作者:Mubayi, Dhruv;Suk, Andrew
- 通讯作者:Suk, Andrew
A Note on Visible Islands
关于可见岛屿的注释
- DOI:10.1556/012.2022.01524
- 发表时间:2022
- 期刊:
- 影响因子:0.7
- 作者:Leuchtner, Sophie;Nicolás, Carlos M.;Suk, Andrew
- 通讯作者:Suk, Andrew
A note on the Erdős-Hajnal hypergraph Ramsey problem
关于 ErdÅs-Hajnal 超图 Ramsey 问题的注解
- DOI:10.1090/proc/15839
- 发表时间:2022
- 期刊:
- 影响因子:1
- 作者:Mubayi, Dhruv;Suk, Andrew;Zhu, Emily
- 通讯作者:Zhu, Emily
Hasse diagrams with large chromatic number
大色数哈斯图
- DOI:10.1112/blms.12457
- 发表时间:2021
- 期刊:
- 影响因子:0.9
- 作者:Suk, Andrew;Tomon, István
- 通讯作者:Tomon, István
共 8 条
- 1
- 2
Jacques Verstraete的其他基金
2020 Graduate Student Combinatorics Conference
2020年研究生组合学会议
- 批准号:19333601933360
- 财政年份:2019
- 资助金额:$ 62.16万$ 62.16万
- 项目类别:Standard GrantStandard Grant
Turan-Type Extremal Problems and Applications
图兰型极值问题及其应用
- 批准号:18008321800832
- 财政年份:2018
- 资助金额:$ 62.16万$ 62.16万
- 项目类别:Continuing GrantContinuing Grant
Extremal Combinatorics and Applications
极值组合学及其应用
- 批准号:13626501362650
- 财政年份:2014
- 资助金额:$ 62.16万$ 62.16万
- 项目类别:Continuing GrantContinuing Grant
Extremal combinatorial structures and algorithms
极值组合结构和算法
- 批准号:11014891101489
- 财政年份:2011
- 资助金额:$ 62.16万$ 62.16万
- 项目类别:Continuing GrantContinuing Grant
Turan-type problems and probabilistic methods in extremal combinatorics
极值组合学中的图兰型问题和概率方法
- 批准号:08007040800704
- 财政年份:2008
- 资助金额:$ 62.16万$ 62.16万
- 项目类别:Continuing GrantContinuing Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
- 批准号:62373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
- 批准号:82372548
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
- 批准号:32302064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:22449782244978
- 财政年份:2023
- 资助金额:$ 62.16万$ 62.16万
- 项目类别:Continuing GrantContinuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:22450172245017
- 财政年份:2023
- 资助金额:$ 62.16万$ 62.16万
- 项目类别:Standard GrantStandard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:22451112245111
- 财政年份:2023
- 资助金额:$ 62.16万$ 62.16万
- 项目类别:Continuing GrantContinuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:22450772245077
- 财政年份:2023
- 资助金额:$ 62.16万$ 62.16万
- 项目类别:Continuing GrantContinuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:22448792244879
- 财政年份:2023
- 资助金额:$ 62.16万$ 62.16万
- 项目类别:Standard GrantStandard Grant