IRES Track I:Collaborative Research:Application-Specific Asynchronous Deep Learning IC Design for Ultra-Low Power

IRES 轨道 I:协作研究:超低功耗专用异步深度学习 IC 设计

基本信息

  • 批准号:
    1951488
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This 3-year IRES Track I project recruits three cohorts of U.S. students to conduct research in China, with the major research goal as developing, fabricating, and testing an ultra-low power application-specific deep learning integrated circuit, and evaluating its performance through the integration with physical Internet-of-Things (IoT) edge computing devices. It brings together three research groups with unique expertise from University of Arkansas (ultra-low power asynchronous circuit design), University of South Alabama (context-aware memory design), and Peking University, China (deep learning algorithm development and optimization). The expected research outcomes will accelerate edge computing for a large variety of IoT applications such as advanced medical and elderly care systems, and self-driving vehicles. Each year six U.S. student participants work onsite at Peking University for eight weeks, leveraging the onsite research facilities. The multicultural, multidisciplinary nature of this project provides a unique training and career preparation opportunity for the participating students, including multidisciplinary discussion, teamwork, effective communication, and technical writing. The PIs continue their prior efforts in recruiting student participants from underrepresented and minority groups, leveraging their contacts and the existing mechanisms at each university. The research outcomes and the student experience will be disseminated nation-wide for benefiting the research community and encouraging more students to participate in similar programs.Deep learning is transforming many modern Artificial Intelligence (AI) applications, in many of which deep learning has begun to exceed human performance. However, the superior performance of deep learning comes at the cost of extremely high computational complexity associated with large datasets. Therefore, deep learning algorithms are traditionally implemented in software and executed on powerful general-purpose cloud computing platforms. In contrast to the prevailing research in general-purpose counterparts, the application-specific deep learning IC has much lower power consumption, thereby ideal for integration with power-constrained IoT devices. This IRES project is to develop, fabricate, and test an ultra-low power deep learning integrated circuit (IC), and evaluate its performance through the integration with physical IoT edge computing devices. Technical innovations to be developed by the student participants include: 1) optimization of application-specific deep learning algorithms for alleviating the requirements of hardware implementation; 2) delay-insensitive asynchronous circuit design for substantially improved energy efficiency; and 3) context-aware memory development for power savings and low implementation cost. This project uniquely connects deep learning algorithm optimization, asynchronous circuit design, and memory optimization together to achieve a highly optimized system, which will benefit the semiconductor and AI societies at large by the revolutions in hardware-tailored deep learning algorithms and specialized computing hardware. It is expected that this research will demonstrate the advantages of application-specific deep learning hardware and layout the foundation of a new and promising direction for both academic research and industrial development.This project is jointly funded by the Office of International Science and Engineering (OISE) and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个为期3年的IRES Track I项目招募了三批美国学生来中国进行研究,主要研究目标是开发、制造和测试超低功耗专用深度学习集成电路,并通过评估其性能与物理物联网 (IoT) 边缘计算设备的集成。它汇集了来自阿肯色大学(超低功耗异步电路设计)、南阿拉巴马大学(上下文感知存储器设计)和中国北京大学(深度学习算法开发和优化)的三个具有独特专业知识的研究小组。预期的研究成果将加速各种物联网应用的边缘计算,例如先进的医疗和老年护理系统以及自动驾驶车辆。每年,六名美国学生参与者在北京大学现场工作八周,利用现场研究设施。该项目的多元文化、多学科性质为参与的学生提供了独特的培训和职业准备机会,包括多学科讨论、团队合作、有效沟通和技术写作。 PI 继续之前的努力,利用他们的人脉和每所大学的现有机制,从代表性不足的群体和少数群体中招募学生参与者。研究成果和学生经验将在全国范围内传播,造福研究界并鼓励更多学生参与类似项目。深度学习正在改变许多现代人工智能(AI)应用,其中许多应用深度学习已经开始超越人类的表现。然而,深度学习的卓越性能是以与大型数据集相关的极高计算复杂性为代价的。因此,深度学习算法传统上以软件形式实现,并在强大的通用云计算平台上执行。与通用型同类产品的流行研究相比,专用深度学习 IC 的功耗要低得多,因此非常适合与功率受限的物联网设备集成。该 IRES 项目旨在开发、制造和测试超低功耗深度学习集成电路 (IC),并通过与物理物联网边缘计算设备的集成来评估其性能。学生参与者将开发的技术创新包括:1)优化特定应用的深度学习算法,以减轻硬件实现的要求; 2)延迟不敏感异步电路设计,大幅提高能效; 3) 上下文感知存储器开发,以节省功耗并降低实施成本。该项目独特地将深度学习算法优化、异步电路设计和内存优化连接在一起,以实现高度优化的系统,这将通过硬件定制的深度学习算法和专用计算硬件的革命使整个半导体和人工智能社会受益。预计该研究将展示专用深度学习硬件的优势,为学术研究和产业发展奠定新的有前景的方向基础。该项目由国际科学与工程办公室(OISE)联合资助)和刺激竞争研究既定计划(EPSCoR)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Na Gong其他文献

Luminance-adaptive smart video storage system
亮度自适应智能视频存储系统
VCAS: Viewing context aware power-efficient mobile video embedded memory
VCAS:查看上下文感知的节能移动视频嵌入式内存
Sizing-priority based low-power embedded memory for mobile video applications
适用于移动视频应用的基于大小优先级的低功耗嵌入式存储器
Variation-and-aging aware low power embedded SRAM for multimedia applications
适用于多媒体应用的变化和老化感知低功耗嵌入式 SRAM
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Na Gong;Shixiong Jiang;Anoosha Challapalli;Manpinder Panesar;R. Sridhar
  • 通讯作者:
    R. Sridhar
Automatic positioning method based on feature points matching for ICF target
基于特征点匹配的ICF目标自动定位方法

Na Gong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Na Gong', 18)}}的其他基金

Collaborative Research: CNS Core: Small: Privacy by Memory Design
合作研究:CNS 核心:小型:内存设计的隐私
  • 批准号:
    2211215
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
RII Track 2 FEC: Building Research Infrastructure and Workforce in Edge Artificial Intelligence
RII Track 2 FEC:建设边缘人工智能研究基础设施和劳动力
  • 批准号:
    2218046
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Cooperative Agreement
RET Site: Research Experiences for Teachers in Biologically-inspired Computing Systems
RET 网站:教师在仿生计算系统方面的研究经验
  • 批准号:
    1953544
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
SHF: Small: Turning Visual Noise into Hardware Efficiency: Viewer-Aware Energy-Quality Adaptive Mobile Video Storage
SHF:小:将视觉噪声转化为硬件效率:观看者感知的能源质量自适应移动视频存储
  • 批准号:
    1815430
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
SHF: Small: Turning Visual Noise into Hardware Efficiency: Viewer-Aware Energy-Quality Adaptive Mobile Video Storage
SHF:小:将视觉噪声转化为硬件效率:观看者感知的能源质量自适应移动视频存储
  • 批准号:
    1855706
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER: Data-Mining Driven Power-Efficient Intelligent Memory Storage for Mobile Video Applications
EAGER:适用于移动视频应用的数据挖掘驱动型节能智能内存存储
  • 批准号:
    1514780
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似国自然基金

融合多源生物信息-连续知识追踪解码-无关意图拒识机制的康复外骨骼人体运动意图识别研究
  • 批准号:
    62373344
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于三维显微图像序列的细胞追踪与迁移行为分析方法
  • 批准号:
    62301296
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用精准谱系追踪揭示关节囊纤维化导致颞下颌关节强直的分子机制研究
  • 批准号:
    82301010
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医养结合机构服务模式对老年人健康绩效的影响、机制与引导政策:基于准自然实验的追踪研究
  • 批准号:
    72374125
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
基于量子电压动态追踪补偿的精密磁通测量方法研究
  • 批准号:
    52307021
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: IRES Track I: Wireless Federated Fog Computing for Remote Industry 4.0 Applications
合作研究:IRES Track I:用于远程工业 4.0 应用的无线联合雾计算
  • 批准号:
    2417064
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: IRES Track I: From fundamental to applied soft matter: research experiences in Mexico
合作研究:RUI:IRES 第一轨:从基础到应用软物质:墨西哥的研究经验
  • 批准号:
    2426728
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: IRES Track I: From fundamental to applied soft matter: research experiences in Mexico
合作研究:RUI:IRES 第一轨:从基础到应用软物质:墨西哥的研究经验
  • 批准号:
    2245405
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: IRES Track I: Artificial Intelligence and Human Designer - Research Experience in Singapore (AIHD Singapore)
合作研究:IRES 第一轨:人工智能和人类设计师 - 新加坡的研究经验 (AIHD Singapore)
  • 批准号:
    2246299
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: IRES Track I: US-Costa Rica Collaboration to Quantify the Holistic Benefits of Resource Recovery in Small-Scale Communities
合作研究:IRES 第一轨:美国-哥斯达黎加合作量化小规模社区资源回收的整体效益
  • 批准号:
    2246349
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了