Collaborative Research: Emergent Sequences in Inhibition-Dominated Recurrent Networks
合作研究:抑制主导的循环网络中的涌现序列
基本信息
- 批准号:1951165
- 负责人:
- 金额:$ 14.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sequences of neural activity arise in many brain areas, including cortex, hippocampus, and central pattern generator circuits that underlie rhythmic behaviors like locomotion. Moreover, sequences that occur in hippocampus while the animal is at rest or asleep are believed to be critical for memory processing and consolidation. These sequences are examples of internally generated activity: that is, neural activity that is shaped primarily by the structure of recurrent connections between neurons. The goal of this research is to advance the mathematical theory of sequence generation. A fundamental question is what types of network architectures underlie emergent sequences. This work will investigate the mechanisms for sequence generation in recurrently connected networks with complex patterns of connectivity and inhibition-dominated dynamics. The theory will then be used to understand and model neural sequences, with a focus on hippocampal sequences. Although this work is motivated by neuroscience, the phenomenon of sequential activity emerging from competition between units is sufficiently common that the mathematical results derived here are likely to be useful in a variety of broader contexts in the biological and social sciences.The main goal of this research is to understand, and be able to predict, the set of neural activity sequences in a recurrent network from the underlying structure of connectivity. In addition to providing new insights about sequence generation in the brain, this study will elucidate structure-function relationships in recurrent networks and provide tools for analyzing networks to identify dynamically relevant motifs. This research will be carried out in the context of a special family of inhibition-dominated threshold-linear networks, which are a commonly used firing rate model of recurrent network dynamics. These networks naturally give rise to an abundance of sequences, and the dynamics are tightly connected to the underlying connectivity graph. Moreover, they are mathematically tractable and thus amenable to a mathematical theory of sequence generation. Project 1 focuses on network architectures built from directional graphs, a new type of graph exhibiting directional dynamics without necessarily having a feedforward architecture, thus providing an important generalization of synfire chains. Project 2 addresses the anatomy of a sequence and its decomposition into “core” and “peripheral” components, with the core being a network motif that supports a sequential attractor, and the periphery consisting of additional neurons that are recruited by the attractor. Finally, Project 3 uses the theory developed in earlier projects to analyze and model various phenomena observed in hippocampal sequences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
神经元活性的序列在许多大脑区域都出现,包括皮质,海马和中央模式发生器电路,这些电路构成了节奏行为等节奏行为。此外,在动物处于静止或入睡时,海马中发生的序列对于记忆加工和巩固至关重要。这些序列是内部生成活性的示例:即,神经元活性主要由神经元之间复发连接的结构形成。这项研究的目的是推进序列产生的数学理论。一个基本的问题是,哪些类型的网络体系结构是紧急序列的基础。这项工作将研究具有复杂连通性和抑制主导动力学的复杂模式的经常连接网络中序列产生的机制。然后,该理论将用于理解和建模神经元序列,重点是海马序列。尽管这项工作是出于神经科学的动机,但单位之间竞争的顺序活动现象非常普遍,以至于这里得出的数学结果可能在生物学和社会科学的各种更广泛的环境中很有用。这项研究的主要目标是理解,并且能够预测Neuronal活动的结构中的连接式结构。除了提供有关大脑序列产生的新见解外,本研究还将阐明复发网络中的结构 - 功能关系关系,并提供用于分析网络以识别动态相关基序的工具。这项研究将在特殊的抑制阈值线性网络系列的背景下进行,该网络是经常使用的重复网络动力学的触发率模型。这些网络自然会产生大量序列,并且动力学紧密连接到基础连接图。此外,它们在数学上是可探讨的,因此可以适合序列产生的数学理论。项目1专注于根据指令图构建的网络体系结构,这是一种携带指令动力学的新型图形,而不必具有前馈架构,从而提供了同步链的重要概括。项目2解决了序列的解剖结构及其分解为“核心”和“周围”组件,其中核心是一个支持顺序吸引子的网络基序,以及由吸引子募集的其他神经元组成的周围。最后,项目3使用了早期项目中开发的理论来分析和模拟海马序列中观察到的各种现象。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估审查标准,通过评估被认为是珍贵的支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stable fixed points of combinatorial threshold-linear networks
组合阈值线性网络的稳定不动点
- DOI:10.1016/j.aam.2023.102652
- 发表时间:2024
- 期刊:
- 影响因子:1.1
- 作者:Curto, Carina;Geneson, Jesse;Morrison, Katherine
- 通讯作者:Morrison, Katherine
Nerve Theorems for Fixed Points of Neural Networks
神经网络不动点的神经定理
- DOI:10.1007/978-3-030-95519-9_6
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Santander, D. E.;Ebli, S.;Patania, A.;Sanderson, N.;Burtscher, F.;Morrison, K.;Curto, C.
- 通讯作者:Curto, C.
Periodic neural codes and sound localization in barn owls
仓鸮的周期性神经编码和声音定位
- DOI:10.2140/involve.2022.15.1
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Brown, Lindsey S.;Curto, Carina
- 通讯作者:Curto, Carina
Graph Rules for Recurrent Neural Network Dynamics
递归神经网络动力学的图规则
- DOI:10.1090/noti2661
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Curto, Carina;Morrison, Katherine
- 通讯作者:Morrison, Katherine
Sequence generation in inhibition-dominated neural networks
抑制主导的神经网络中的序列生成
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:2.1
- 作者:Parmelee, Caitlin;Londono Alvarez, Juliana;Curto, Carina;Morrison, Katherine
- 通讯作者:Morrison, Katherine
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carina Curto其他文献
Carina Curto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carina Curto', 18)}}的其他基金
Theory of threshold-linear networks and combinatorial neural codes.
阈值线性网络和组合神经代码的理论。
- 批准号:
1516881 - 财政年份:2015
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
Memory encoding in spatially structured networks: dynamics, discrete geometry & topology
空间结构化网络中的记忆编码:动力学、离散几何
- 批准号:
1537228 - 财政年份:2014
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
Memory encoding in spatially structured networks: dynamics, discrete geometry & topology
空间结构化网络中的记忆编码:动力学、离散几何
- 批准号:
1225666 - 财政年份:2012
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
Stimulus representation and spontaneous activity in recurrent networks
循环网络中的刺激表征和自发活动
- 批准号:
0920845 - 财政年份:2009
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
相似国自然基金
重大工程地震紧急处置参数人工智能预测模型及其阈值研究
- 批准号:42304074
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
矿山无人驾驶单轨吊重载下坡紧急制动可靠性评估方法研究
- 批准号:52375277
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
高压柔性直流系统无潮流控制器化预防-紧急潮流控制策略研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高压柔性直流系统无潮流控制器化预防-紧急潮流控制策略研究
- 批准号:52207083
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
考虑决策信息和患者紧急性的医疗排队系统调度优化问题研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: URoL:ASC: Applying rules of life to forecast emergent behavior of phytoplankton and advance water quality management
合作研究:URoL:ASC:应用生命规则预测浮游植物的紧急行为并推进水质管理
- 批准号:
2318862 - 财政年份:2023
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
Collaborative Research: EPIIC: Enabling Meaningful External Research Growth in Emergent Technologies (EMERGE)
合作研究:EPIIC:实现新兴技术领域有意义的外部研究增长 (EMERGE)
- 批准号:
2331219 - 财政年份:2023
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
Collaborative Research: URoL:ASC: Applying rules of life to forecast emergent behavior of phytoplankton and advance water quality management
合作研究:URoL:ASC:应用生命规则预测浮游植物的紧急行为并推进水质管理
- 批准号:
2318861 - 财政年份:2023
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
Collaborative Research: EPIIC: Enabling Meaningful External Research Growth in Emergent Technologies (EMERGE)
合作研究:EPIIC:实现新兴技术领域有意义的外部研究增长 (EMERGE)
- 批准号:
2331218 - 财政年份:2023
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
Collaborative Research: EPIIC: Enabling Meaningful External Research Growth in Emergent Technologies (EMERGE)
合作研究:EPIIC:实现新兴技术领域有意义的外部研究增长 (EMERGE)
- 批准号:
2331221 - 财政年份:2023
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant