Conducting Polymer Coated Cathode Nanoparticles for Improved Battery Performance

导电聚合物涂覆的阴极纳米粒子可提高电池性能

基本信息

  • 批准号:
    1950964
  • 负责人:
  • 金额:
    $ 31.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

This grant supports research to enhance lithium ion battery performance and longevity through research on a unique manufacturing process that generates new scientific knowledge. Currently, lithium ion battery electrode materials are prone to degrade when the battery is repeatedly used and recharged. Specifically, cathode materials degrade in the highly energetic, corrosive battery environment. To overcome these challenges and to make the cathode materials more stable, a novel manufacturing process is used to wrap a protective conducting polymer layer around the nanoparticles that make up the cathode. This process creates an extremely thin film that helps keep the underlying cathode nanoparticles active. The electrically conducting polymer maintains a well-connected battery circuit and provides a physically dense and chemically stable barrier for maximum protection. This project studies the oxidative chemical vapor deposition process to manufacture protected cathode materials for more stable, high performance batteries. The ability to coat miniscule parts and components with ultrathin conducting polymers impacts broader energy technology areas such as solar cells, fuel cells and supercapacitors, which creates a more sustainable U.S. energy economy. Furthermore, this coating technology enables applications in sensors, electronics, smart textiles, biomedical and aerospace industries that makes U.S. manufacturing more competitive. This research involves disciplines of manufacturing, materials science, electrochemistry and nanotechnology that attracts broad participation, particularly from underrepresented groups and women, and helps equip the future U.S. workforce with cutting-edge science and value-added skill-sets.The oxidative chemical vapor deposition (oCVD) process is a solvent-free thin film coating technique that directly polymerizes the monomer vapor into a solid intrinsically conducting polymer (ICP) film through the use of an oxidant vapor. Being liquid-free, it overcomes conventional solvent processing problems of encapsulating conducting polymer coatings around cathode nanoparticles. Conducting polymers are often not very soluble so they are not amenable to solution processing. Furthermore, liquid methods are often less precise, which makes it difficult to produce ultrathin, nanoscale coatings. The dry oCVD process shows promise in overcoming these manufacturing barriers. However, this technology is relatively new, and this research fills the knowledge gap by identifying the key processing factors and mechanisms for achieving conformal, fully encapsulating ICP coatings around particle substrates. The research further understands the precise role of the coatings in stabilizing cathode materials and enhancing battery performance. The research team conducts a comprehensive experimental analysis from materials fabrication to device testing to understand the relevant processing-structure-property relationships for achieving maximum cathode protection and superior battery performance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该赠款支持研究,以通过对产生新科学知识的独特制造过程进行研究来增强锂离子电池的性能和寿命。当前,当电池反复使用和充电时,锂离子电池电极材料容易降解。具体而言,在高能性,腐蚀性的电池环境中,阴极材料降解。为了克服这些挑战并使阴极材料更稳定,使用新颖的制造工艺来包裹构成阴极的纳米颗粒周围的保护性导电层。这个过程产生了非常薄的膜,有助于保持下面的阴极纳米颗粒活跃。电动导电聚合物保持连接良好的电池电路,并提供了物理密集且化学稳定的障碍物,以最大程度地保护。该项目研究了制造受保护的阴极材料的氧化化学蒸气沉积过程,以实现更稳定的高性能电池。用超薄的导电聚合物涂装微小零件和组件的能力会影响更广泛的能源技术领域,例如太阳能电池,燃料电池和超级电容器,从而创造了更可持续的美国能源经济。此外,这种涂料技术可以在传感器,电子,智能纺织品,生物医学和航空航天行业中进行应用,使美国制造业更具竞争力。这项研究涉及制造,材料科学,电化学和纳米技术的学科,吸引了广泛的参与,特别是来自代表性不足的群体和妇女,并有助于为未来的美国劳动力配备尖端的科学和增值技能。 (OCVD)过程是一种无溶剂薄膜涂料技术,可通过使用氧化剂蒸气直接将单体蒸气聚合到固有导电聚合物(ICP)膜中。它是无液体的,它克服了封装阴极纳米颗粒周围的聚合物涂层的传统溶剂加工问题。传导聚合物通常不是很溶,因此它们不适合溶液处理。此外,液体方法通常不那么精确,这使得很难生产超薄的纳米级涂料。干燥的OCVD过程显示了克服这些制造障碍的希望。但是,这项技术是相对较新的,这项研究通过识别关键处理因素和机制来填补知识差距,以实现保形,完全封装粒子基板周围的ICP涂层。该研究进一步了解了涂料在稳定阴极材料并增强电池性能中的确切作用。研究团队进行了从材料制造到设备测试的全面实验分析,以了解相关的处理结构 - 实用关系关系,以实现最大的阴极保护和出色的电池性能。该奖项反映了NSF的法定任务,并被认为是值得通过使用评估的支持。基金会的智力优点和更广泛的影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenneth Lau其他文献

Identification of Specific Chemokines and Apoptosis Molecules in Pediatric Idiopathic Neutropenia.
小儿特发性中性粒细胞减少症中特异性趋化因子和凋亡分子的鉴定。
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Callejas;K. Nadeau;Kokil Bakshi;Wendy B. Wong;Tanya Carroll;Kenneth Lau;Yang Yang;J. Schilling;C. Clayberger;A. Krensky;M. Jeng
  • 通讯作者:
    M. Jeng
A unified representation network for segmentation with missing modalities
用于缺少模态分割的统一表示网络
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kenneth Lau;J. Adler;Jens Sjölund
  • 通讯作者:
    Jens Sjölund
Cancer Biomarker Discovery via Targeted Profiling of Multiclass Tumor Tissue-Derived Proteomes
通过多类肿瘤组织衍生蛋白质组的靶向分析发现癌症生物标志物
  • DOI:
    10.1007/s12014-009-9037-0
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Longhai Zhou;Mingquan Cai;X. Ling;Qiang Wang;Kenneth Lau;Jiagang J. Zhao;J. Schilling;Liangbiao Chen
  • 通讯作者:
    Liangbiao Chen
This information is current as Cell Homeostasis Regulatory T + Enhanced Peripheral Foxp 3 Autoinflammatory Disease Correlated to Lethal − / − Inhibition of SOCS 1
此信息是当前的细胞稳态调节 T + 增强外周 Foxp 3 自身炎症性疾病与致死性 SOCS 1 抑制相关 - / -
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erin L. Collins;Lindsey D. Jager;Rea Dabelic;Patrick L. Benitez;Kaitlin Holdstein;Kenneth Lau;M. Haider;H. Johnson;J. Larkin
  • 通讯作者:
    J. Larkin
Alterations in Cerebrospinal Fluid Proteins in a Presymptomatic Primary Glioma Model
症状前原发性胶质瘤模型中脑脊液蛋白的变化
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    J. Whitin;T. Jang;M. Merchant;T. Yu;Kenneth Lau;Benjamin Recht;H. Cohen;L. Recht
  • 通讯作者:
    L. Recht

Kenneth Lau的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenneth Lau', 18)}}的其他基金

Conducting Polymer Coated Cathode Nanoparticles for Improved Battery Performance
导电聚合物涂覆的阴极纳米粒子可提高电池性能
  • 批准号:
    2233923
  • 财政年份:
    2022
  • 资助金额:
    $ 31.81万
  • 项目类别:
    Standard Grant
UNS: Engineering of Polymer Electrolytes for Energy Storage
UNS:用于储能的聚合物电解质工程
  • 批准号:
    1510888
  • 财政年份:
    2015
  • 资助金额:
    $ 31.81万
  • 项目类别:
    Standard Grant
Synthesis and Processing of Electroactive Polymers in Nanostructured Energy Devices
纳米结构能源器件中电活性聚合物的合成和加工
  • 批准号:
    1264487
  • 财政年份:
    2013
  • 资助金额:
    $ 31.81万
  • 项目类别:
    Continuing Grant
MRI-R2: Acquisition of an X-ray Photoelectron Spectroscopy (XPS) Surface Analysis Instrumentation for Enabling Research and Education in Greater Philadlephia
MRI-R2:购买 X 射线光电子能谱 (XPS) 表面分析仪器,以促进大费城的研究和教育
  • 批准号:
    0959361
  • 财政年份:
    2010
  • 资助金额:
    $ 31.81万
  • 项目类别:
    Standard Grant
SGER: Initiated Chemical Vapor Deposition Synthesis and Design of Polymers for Alternative Energies
SGER:用于替代能源的聚合物的化学气相沉积合成和设计
  • 批准号:
    0820608
  • 财政年份:
    2008
  • 资助金额:
    $ 31.81万
  • 项目类别:
    Standard Grant
CAREER: Engineering and Integration of Polymer Electronic Materials for Alternative Energies
职业:替代能源高分子电子材料的工程和集成
  • 批准号:
    0846245
  • 财政年份:
    2008
  • 资助金额:
    $ 31.81万
  • 项目类别:
    Standard Grant

相似国自然基金

CuAl/有机聚合物复合涂层构筑及其转移润滑膜调控研究
  • 批准号:
    52305205
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水性类液聚合物涂层的设计及其防污阻垢机理研究
  • 批准号:
    22375047
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于两性离子聚合物刷的介入导管长效抗凝润滑涂层研究
  • 批准号:
    52375191
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
“聚合物陶瓷”海洋防污涂层设计与性能调控
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
官能化离子聚合物涂层设计、制备及其耐α射线辐射损伤机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Investigating heterojunction-based organic phototransistors and circuits using layer-by-layer coated highly-oriented polymer semiconductors
使用逐层涂覆的高取向聚合物半导体研究基于异质结的有机光电晶体管和电路
  • 批准号:
    24K17743
  • 财政年份:
    2024
  • 资助金额:
    $ 31.81万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Functional polymer with regulated ionic behavior and the coated nanoparticles for penetration into tumorous deeper sites
具有可调节离子行为的功能聚合物和可渗透到肿瘤更深部位的涂层纳米颗粒
  • 批准号:
    23K19223
  • 财政年份:
    2023
  • 资助金额:
    $ 31.81万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Experimental Investigation of various polymer films used for polymer laminated or coated steel packaging products
用于聚合物层压或涂层钢包装产品的各种聚合物薄膜的实验研究
  • 批准号:
    2783540
  • 财政年份:
    2023
  • 资助金额:
    $ 31.81万
  • 项目类别:
    Studentship
Biomimetic Macrophage Membrane-Coated Nanosponges: A Novel Therapeutic for Multidrug-Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Hospital-Associated Pneumonia
仿生巨噬细胞膜包被的纳米海绵:一种治疗多重耐药铜绿假单胞菌和鲍曼不动杆菌医院相关肺炎的新疗法
  • 批准号:
    10674406
  • 财政年份:
    2023
  • 资助金额:
    $ 31.81万
  • 项目类别:
Multilayer Graphene Based Anti-Corrosion Polymer Coated Structures
多层石墨烯基防腐聚合物涂层结构
  • 批准号:
    DP230100548
  • 财政年份:
    2023
  • 资助金额:
    $ 31.81万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了