RII Track-4: Investigating Solar Wind-Magnetosphere Coupling

RII Track-4:研究太阳风磁层耦合

基本信息

项目摘要

The Sun drives almost all of the (neutral and charged particle) fluctuations in near Earth space or geospace. The energy from the Sun carried by solar wind is transferred to the geospace at the edge of the Earth's magnetic field or magnetosphere through an interaction process called magnetic reconnection. The geospace fluctuations caused by this energy transfer can adversely impact critical national infrastructure (e.g. satellites, power grids, etc.) and endanger the astronauts. However, we do not yet completely understand how the different solar wind conditions affect the amount of energy transferred into the magnetosphere. The fellowship will combine the magnetospheric expertise at the Los Alamos National Laboratory (LANL) with the data science/machine learning expertise of the PI at West Virginia University (WVU) to develop a new model for the geospace/magnetosphere that will help to improve our understanding of this energy transfer process. The project will provide a unique training opportunity for the PI and a graduate student at WVU through visits to LANL and foster long-term collaboration partnerships that will improve research and education in the state of West Virginia.The geospace environment is a highly complex system made up of regions that are closely coupled together. The regions undergo significant variations caused by energy input from the solar wind. The energy transfer occurs primarily through a process known as magnetic reconnection which fuels almost all of the physical and dynamical geospace processes. Understanding the solar wind-magnetosphere coupling is crucial to modeling and predicting the geospace variations that can threaten safety, infrastructure, and property on Earth, in the air, and in space. The goal of the proposed project is to gain new insights into the physics of solar wind-magnetosphere coupling. Simulation studies can provide invaluable insights into the process; however, the impact of existing models is limited by their considerable computational cost. The project will combine the magnetospheric expertise at LANL and PI's expertise in Physics-Informed Machine Learning to develop a reduced order model (ROM) that embeds the physics of the full physical model but significantly reduces the computational cost. The ROM will permit, for the first time, a comprehensive sensitivity and uncertainty analyses to identify the dominant solar wind drivers. Combined with systematic and comprehensive model-data comparisons, the ROM will reveal the paramount processes and may even discover overlooked or missing elements in the solar wind-magnetosphere coupling. The project will provide one graduate student valuable training and help develop a long-term partnership between WVU and LANL that will enhance research and education in the state of West Virginia and make it more competitive.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
太阳驱动近地空间或地球空间中几乎所有的(中性粒子和带电粒子)波动。太阳风携带的来自太阳的能量通过称为磁重联的相互作用过程转移到地球磁场或磁层边缘的地球空间。这种能量转移引起的地球空间波动可能会对关键的国家基础设施(例如卫星、电网等)产生不利影响,并危及宇航员。然而,我们尚未完全了解不同的太阳风条件如何影响转移到磁层的能量。该奖学金将把洛斯阿拉莫斯国家实验室 (LANL) 的磁层专业知识与西弗吉尼亚大学 (WVU) PI 的数据科学/机器学习专业知识相结合,开发一种新的地球空间/磁层模型,这将有助于改善我们的研究成果。了解这个能量传递过程。该项目将通过访问 LANL 为西弗吉尼亚大学的 PI 和研究生提供独特的培训机会,并培养长期合作伙伴关系,从而改善西弗吉尼亚州的研究和教育。 地球空间环境是一个高度复杂的系统紧密耦合在一起的区域。这些区域因太阳风的能量输入而发生显着变化。能量转移主要通过称为磁重联的过程发生,该过程为几乎所有物理和动态地球空间过程提供动力。了解太阳风-磁层耦合对于建模和预测可能威胁地球、空中和太空安全、基础设施和财产的地球空间变化至关重要。该项目的目标是获得对太阳风-磁层耦合物理学的新见解。模拟研究可以为该过程提供宝贵的见解;然而,现有模型的影响因其巨大的计算成本而受到限制。该项目将结合 LANL 的磁层专业知识和 PI 在物理信息机器学习方面的专业知识,开发一种降阶模型 (ROM),该模型嵌入了完整物理模型的物理原理,但显着降低了计算成本。 ROM 将首次允许进行全面的敏感性和不确定性分析,以确定主要的太阳风驱动因素。结合系统和全面的模型数据比较,ROM将揭示最重要的过程,甚至可能发现太阳风-磁层耦合中被忽视或缺失的元素。该项目将为一名研究生提供宝贵的培训,并帮助西弗吉尼亚大学和 LANL 之间建立长期合作伙伴关系,从而加强西弗吉尼亚州的研究和教育并使其更具竞争力。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Piyush Mehta其他文献

Probing the influence of lactose fines, a USP modified induction port and modified DDU apparatus on the aerodynamic behavior of a fluticasone propionate dry powder inhaler
  • DOI:
    10.1039/c9nj01747j
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Piyush Mehta;C. Bothiraja;Shivajirao Kadam;Atmaram Pawar
  • 通讯作者:
    Atmaram Pawar
Strategies for formulation development of andrographolide
  • DOI:
    10.1039/c6ra12161f
  • 发表时间:
    2016-07
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Atmaram Pawar;S. Rajalakshmi;Piyush Mehta;Karimunnisa Shaikh;Chellampillai Bothiraja
  • 通讯作者:
    Chellampillai Bothiraja
Dendrimers for pulmonary delivery: current perspectives and future challenges
  • DOI:
    10.1039/c9nj01591d
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Piyush Mehta;Shivajirao Kadam;Atmaram Pawar;C. Bothiraja
  • 通讯作者:
    C. Bothiraja
Synthesis of fisetin co-crystals with caffeine and nicotinamide using the cooling crystallization technique: biopharmaceutical studies
  • DOI:
    10.1039/c9nj01848d
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Rohini Mohite;Piyush Mehta;S. Arulmozhi;Ravindra Kamble;Atmaram Pawar;C. Bothiraja
  • 通讯作者:
    C. Bothiraja

Piyush Mehta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Piyush Mehta', 18)}}的其他基金

CAREER: Self-Consistent Density Estimates from Accelerometers for Improved Understanding, Modeling, and Forecasting of Upper Atmosphere Variability
职业:通过加速度计进行自洽密度估计,以提高对高层大气变化的理解、建模和预测
  • 批准号:
    2140204
  • 财政年份:
    2022
  • 资助金额:
    $ 27.37万
  • 项目类别:
    Continuing Grant
Collaborative Research: ANSWERS: Ion-Neutral Coupling in Geospace and its Impact on Space Weather
合作研究:答案:地球空间中的离子中性耦合及其对空间天气的影响
  • 批准号:
    2149779
  • 财政年份:
    2022
  • 资助金额:
    $ 27.37万
  • 项目类别:
    Continuing Grant

相似国自然基金

基础学科拔尖学生发展及其影响机制的追踪研究
  • 批准号:
    72304231
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向小样本教育场景的学生知识追踪方法研究
  • 批准号:
    62307006
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多精度目标追踪的多模态统一模型
  • 批准号:
    62302328
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
前额叶及其脑网络在儿童共情发展中的作用:计算建模与追踪研究
  • 批准号:
    32371103
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
稀疏优化问题中的匹配追踪类和阈值类算法研究
  • 批准号:
    12301393
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RII Track-4:NSF: Investigating Functional Neuronal Connections between Sensory and Motor Cortex using 3D Mesoscopic Optical Imaging Technique and Three-photon Microscopy
RII Track-4:NSF:使用 3D 介观光学成像技术和三光子显微镜研究感觉皮层和运动皮层之间的功能神经元连接
  • 批准号:
    2132161
  • 财政年份:
    2022
  • 资助金额:
    $ 27.37万
  • 项目类别:
    Standard Grant
RII Track-4: Investigating the Effects of Faulting on Chemical Exchange Between Seawater and Earth’s Mantle at Slow Mid-Ocean Ridges
RII Track-4:研究断层对慢洋中脊海水与地幔之间化学交换的影响
  • 批准号:
    2033364
  • 财政年份:
    2021
  • 资助金额:
    $ 27.37万
  • 项目类别:
    Standard Grant
RII Track-4: PermaSense: Investigating Permafrost Landscapes in Transition Using Multidimensional Remote Sensing, Data Fusion, and Machine Learning Techniques
RII Track-4:PermaSense:利用多维遥感、数据融合和机器学习技术研究转型中的永久冻土景观
  • 批准号:
    1929170
  • 财政年份:
    2019
  • 资助金额:
    $ 27.37万
  • 项目类别:
    Standard Grant
RII Track-4: Time-Resolved Mossbauer Spectroscopy, a New Tool for Investigating Ultrafast Dynamics in Solid-State Photocatalytic and Photovoltaic Materials
RII Track-4:时间分辨穆斯堡尔光谱,研究固态光催化和光伏材料超快动力学的新工具
  • 批准号:
    1832944
  • 财政年份:
    2018
  • 资助金额:
    $ 27.37万
  • 项目类别:
    Standard Grant
RII Track-4: Investigating 3-D Dispersed Smart Antenna Arrays for Nearly Full Spherical Scanning by New Radios (NRs)
RII Track-4:研究 3D 分散智能天线阵列,以通过新无线电 (NR) 进行近乎全球形扫描
  • 批准号:
    1833016
  • 财政年份:
    2018
  • 资助金额:
    $ 27.37万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了