FW-HTF-RL: Collaborative Research: Shared Autonomy for the Dull, Dirty, and Dangerous: Exploring Division of Labor for Humans and Robots to Transform the Recycling Sorting Industry

FW-HTF-RL:协作研究:沉闷、肮脏和危险的共享自治:探索人类和机器人的分工以改变回收分类行业

基本信息

  • 批准号:
    1928477
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

This Future of Work at the Human-Technology Frontier (FW-HTF) project investigates a novel human-robot collaboration architecture to improve efficiency and profitability in the recycling industry, while re-creating recycling jobs to be safer, cleaner, and more meaningful. The specific goal is to improve the waste sorting process, that is, the separation of mixed waste into plastics, paper, metal, glass, and non-recyclables. The US scrap recycling industry -- which represents $117 billion in annual economic activity and more than 530,000 US jobs -- is struggling to meet increasingly challenging standards in domestic and international markets. A major problem for the industry is poor sorting of waste, resulting in materials impurity and a significant decrease in the quality and value of the recycled product. Human perception and judgement are essential to handle the object variety, clutter level and changing characteristics of the waste stream. Yet waste-sorting workers currently face health risks and discomfort arising from sharp and heavy objects, toxic materials, noise, vibration, dust, noisome odors, and poor heating, ventilation, and air conditioning. The innovative robotics component of this project, especially in object detection, manipulation, and human-robot interaction, will allow new sorting facility architectures, creating new, safer roles for human workers. The project complements these technological advances with economic analyses to determine the facility configurations that best remove processing bottlenecks, target materials of high value, and boost the end-to-end efficiency of the recycling process. Division of labor between humans and robots will be investigated to improve job desirability and worker motivation, incorporating consideration of the workers' well-being. In particular, the project will explore ways to utilize robots to amplify worker expertise and value. A holistic and interconnected research approach will be taken for all these aspects, i.e. developing robotics technology, designing the human-machine interfaces, investigating workers' workers' role in the new sorting plant architectures, and understanding and incorporating workers' needs and well-being into the design process.This project will develop the appropriate robotics technology for recycling industry deployment, which will require advancing the state of the art in waste classification and manipulation to handle the conditions associated with recycling facilities. Deep Neural Networks-based object detection and semantic segmentation frameworks will be designed for rich, multi-modal sensor data in order to solve challenges regarding a high-level of clutter, occlusion and object variety. Novel robotic manipulation algorithms based on dynamic and soft manipulation strategies will be utilized to separate and pick classified items from the cluttered waste stream. Robust and dexterous robot hardware will be developed, including the robotic arms and end effectors. Human-machine interfaces will be designed and implemented to achieve these tasks in an intuitive, efficient and practical workflow that optimizes the contributions of both human workers and automated technologies. The robotics technology will also allow expanding the facilities from simply sorting the incoming materials into a whole recycling ecosystem; additional process lines for onsite materials processing units will enable conveying partially-finished products to next stage manufacturers. This expansion will require a novel systems approach, and will help achieve more efficient recycling plants and a much more comprehensive employment ladder for current and new workers. These technological and structural changes in the interactional system of work will shift both the task and relational landscape of the work. The effect of these shifts on worker satisfaction and motivation will be investigated via worker interviews with simulated systems. The new technological landscape will be formed accordingly for improved work experience.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类技术前沿的工作未来 (FW-HTF) 项目研究了一种新颖的人机协作架构,以提高回收行业的效率和盈利能力,同时重新创造更安全、更清洁、更有意义的回收工作。具体目标是改进垃圾分类流程,即将混合垃圾分为塑料、纸张、金属、玻璃和不可回收物。美国废料回收行业每年的经济活动价值达 1,170 亿美元,为美国提供了超过 53 万个就业岗位,但该行业正在努力满足国内和国际市场日益严峻的标准。该行业的一个主要问题是废物分类不善,导致材料杂质以及回收产品的质量和价值显着下降。人类的感知和判断对于处理废物流的物体多样性、杂乱程度和不断变化的特征至关重要。然而,垃圾分类工人目前面临着由尖锐和重物、有毒材料、噪音、振动、灰尘、恶臭以及供暖、通风和空调不良引起的健康风险和不适。该项目的创新机器人技术,特别是在物体检测、操纵和人机交互方面,将允许新的分拣设施架构,为人类工人创造新的、更安全的角色。该项目通过经济分析补充了这些技术进步,以确定最能消除加工瓶颈、瞄准高价值材料并提高回收过程端到端效率的设施配置。将研究人类和机器人之间的分工,以提高工作满意度和工人积极性,并考虑工人的福祉。特别是,该项目将探索利用机器人来增强工人专业知识和价值的方法。所有这些方面都将采取整体和相互关联的研究方法,即开发机器人技术、设计人机界面、调查工人在新分拣工厂架构中的角色,以及理解和纳入工人的需求和福祉该项目将开发适合回收行业部署的机器人技术,这将需要推进废物分类和处理方面的最先进技术,以处理与回收设施相关的条件。基于深度神经网络的对象检测和语义分割框架将针对丰富的多模式传感器数据进行设计,以解决有关高级混乱、遮挡和对象多样性的挑战。基于动态和软操纵策略的新型机器人操纵算法将用于从杂乱的废物流中分离和挑选分类物品。将开发坚固且灵巧的机器人硬件,包括机械臂和末端执行器。将设计和实施人机界面,以直观、高效和实用的工作流程来完成这些任务,从而优化人类工人和自动化技术的贡献。机器人技术还将允许将设施从简单地对进料进行分类扩展到整个回收生态系统;现场材料加工装置的额外生产线将能够将半成品输送到下一阶段的制造商。这种扩张将需要一种新颖的系统方法,并将有助于实现更高效的回收工厂以及为现有和新工人提供更全面的就业阶梯。交互工作系统中的这些技术和结构变化将改变工作的任务和关系景观。这些转变对员工满意度和积极性的影响将通过模拟系统的员工访谈进行调查。新的技术格局将相应形成,以改善工作体验。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kate Saenko其他文献

The study of the antifungal activity of the Bacillus subtilis BZR 336g strain under the conditions of periodic cultivation with the addition of citric acid, corn extract and some microelements
添加柠檬酸、玉米提取物和部分微量元素定期培养条件下枯草芽孢杆菌BZR 336g菌株的抗真菌活性研究
  • DOI:
    10.1051/bioconf/20202100015
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Asaturova;E. Gyrnets;Valeria Allakhverdian;M. Astakhov;Kate Saenko
  • 通讯作者:
    Kate Saenko
FETA: Towards Specializing Foundation Models for Expert Task Applications
FETA:迈向专家任务应用的专业化基础模型
  • DOI:
    10.48550/arxiv.2209.03648
  • 发表时间:
    2022-09-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amit Alfassy;Assaf Arbelle;Oshri Halimi;Sivan Harary;Roei Herzig;Eli Schwartz;Rameswar P;a;a;Michele Dolfi;Christoph Auer;Kate Saenko;P. Staar;R. Feris;Leonid Karlinsky
  • 通讯作者:
    Leonid Karlinsky
Automatic mobile photo tagging using context
使用上下文自动为移动照片添加标签
Towards adaptive object recognition for situated human-computer interaction
面向情境人机交互的自适应对象识别
  • DOI:
    10.1145/1330572.1330579
  • 发表时间:
    2007-11-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kate Saenko;Trevor Darrell
  • 通讯作者:
    Trevor Darrell
Mobile App Tasks with Iterative Feedback (MoTIF): Addressing Task Feasibility in Interactive Visual Environments
具有迭代反馈的移动应用程序任务 (MoTIF):解决交互式视觉环境中的任务可行性
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrea Burns;Deniz Arsan;Sanjna Agrawal;Ranjitha Kumar;Kate Saenko;Bryan A. Plummer
  • 通讯作者:
    Bryan A. Plummer

Kate Saenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kate Saenko', 18)}}的其他基金

Collaborative Research: CCRI:NEW: Research Infrastructure for Real-Time Computer Vision and Decision Making via Mobile Robots
合作研究:CCRI:新:通过移动机器人进行实时计算机视觉和决策的研究基础设施
  • 批准号:
    2120322
  • 财政年份:
    2021
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
S&AS: FND: COLLAB: Learning Manipulation Skills Using Deep Reinforcement Learning with Domain Transfer
S
  • 批准号:
    1724237
  • 财政年份:
    2017
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
EAGER: Quantifying and Reducing Data Bias in Object Detection Using Physics-based Image Synthesis
EAGER:使用基于物理的图像合成来量化和减少物体检测中的数据偏差
  • 批准号:
    1738063
  • 财政年份:
    2016
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
  • 批准号:
    1723379
  • 财政年份:
    2016
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CI-NEW: Collaborative Research: COVE-Computer Vision Exchange for Data, Annotations and Tools
CI-NEW:协作研究:COVE-数据、注释和工具的计算机视觉交换
  • 批准号:
    1629700
  • 财政年份:
    2016
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
  • 批准号:
    1535797
  • 财政年份:
    2015
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
EAGER: Quantifying and Reducing Data Bias in Object Detection Using Physics-based Image Synthesis
EAGER:使用基于物理的图像合成来量化和减少物体检测中的数据偏差
  • 批准号:
    1451244
  • 财政年份:
    2014
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant

相似国自然基金

有机工质-导热油ORC直接接触式蒸汽发生器湍流破碎与强化换热协同耦合机制研究
  • 批准号:
    51706195
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
纳米流体在太阳能中温集热过程的辐射吸收特性与传热机理研究
  • 批准号:
    51206027
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于共晶盐与导热油直接接触换热的高效储热机理
  • 批准号:
    51106185
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
转HTFα对脊髓继发性损伤和微循环重建的影响
  • 批准号:
    39970755
  • 批准年份:
    1999
  • 资助金额:
    13.0 万元
  • 项目类别:
    面上项目

相似海外基金

FW-HTF-RL: Success via a Human-Assistive Wearable Technology Partnership Fostering Neurodiverse Individuals' Work Success via an Assistive Wearable Technology
FW-HTF-RL:通过人类辅助可穿戴技术合作伙伴关系取得成功通过辅助可穿戴技术促进神经多样性个体的工作成功
  • 批准号:
    2326270
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
FW-HTF-RL: Success via a Human-Assistive Wearable Technology Partnership Fostering Neurodiverse Individuals' Work Success via an Assistive Wearable Technology
FW-HTF-RL:通过人类辅助可穿戴技术合作伙伴关系取得成功通过辅助可穿戴技术促进神经多样性个体的工作成功
  • 批准号:
    2326270
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
  • 批准号:
    2326169
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: The Future of Aviation Inspection: Artificial Intelligence and Mixed Reality as Agents of Transformation
FW-HTF-RL/合作研究:航空检查的未来:人工智能和混合现实作为转型的推动者
  • 批准号:
    2326185
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RL: Collaborative Remote Physical Examination: Transforming Medical and Nursing Practice
协作研究:FW-HTF-RL:协作远程体检:改变医疗和护理实践
  • 批准号:
    2326455
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了