Process Intensification via Bijels for Simultaneous and Continuous Catalytic Reaction and Separation

通过 Bijels 进行同步连续催化反应和分离的过程强化

基本信息

  • 批准号:
    1945841
  • 负责人:
  • 金额:
    $ 41.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Chemical process intensification, driven by societal needs for sustainable manufacturing, exploits processes designed to reduce energy demand and minimize environmental impact. Membrane reactors that continuously perform simultaneous catalytic reaction and separation are an important example of this technology. When fluid phases separated by the membrane are of differing polarity (e.g., oil and water), oil-soluble reagents can be reacted and separated from aqueous-soluble products (and vice versa), further adding to the flexibility of these systems. Membrane reactors have had significant impact in the pharmaceutical industry because of the ability to immobilize enzymes as catalysts to drive biochemical reactions at oil/water interfaces within the membrane. Because enzyme-catalyzed reactions operate under mild conditions and pH, they are considered a green processing approach to the continuous reactive separation of pharmaceuticals. Membrane reactors could also reduce the environmental impact of agricultural fertilizers and herbicides by removing inactive or detrimental chemical species. Such processes could also impact the processing of vegetable oils to form specialty products for consumer products ranging from dietary supplements, infant formulas, pharmaceuticals, cosmetics, food, and beverages. In these systems, however, interfacial area, which determines the rate of reaction, is limited to the oil-water interfaces in the membrane reactor pores. The objective of this research program is to transform the field of membrane-based reactive separations by introducing novel high-interfacial area structures with catalyst-laden interface areas (called bijels) as membrane elements. This material allows multiple key functionalities to occur in a thin layer, with remarkably high oil-water interfacial area estimated to be 100 times larger than conventional membranes. In this project, hydrolysis reactions of triglycerides to produce raw materials such as fatty acids and glycerol will be carried out in a bijel membrane reactor; this is an industrially significant process with an annual U.S. market in excess of $25B.Bijels (bicontinuous interfacially jammed emulsion gels) are formed by quenching a miscible system through a critical point to induce phase separation. This quench occurs in the presence of nanoparticles, which form jammed layers trapped at the interface. High interfacial area is achieved because of the special, bicontinuous arrangement of oil and water in bijel membranes that allows interfacial area to increase with bijel membrane thickness. Furthermore, bijels have a sinuous continuous oil domain adjacent and intertwined with a sinuous, continuous water domain. The interface is stabilized and decorated with nanoparticles that can also support immobilized enzymes. The research team will build on their prior success in fabricating bijels and controlling their internal microstructure via a scalable method termed solvent transfer-induced phase separation (STRIPS). The researchers also will build on their collaboration with Pohang University of Science and Technology in South Korea in which batch mode reactive separation using an enzymatic catalysis was demonstrated. Based on these advances, the project objective is to develop bijel-based membrane reactors to facilitate heterogeneous enzyme-catalyzed reactions of reagents and products of differing polarity for continuous reaction and separation. Membrane reactor performance will be assessed using the lipase-catalyzed reaction of triglycerides with water to form glycerol and fatty acids. Specific aims of the research program include (1) studying the effects of STRIPS processing conditions on bijels; (2) demonstrating the continuous hydrolysis of esters through mathematical modeling and experiments; and (3) reduction of membrane transport limitations to create reaction-rate limited performance. The successful completion of this project will enable process intensification through the use of the novel nanostructured liquid films. The research team will learn how to optimally employ the bijel technology in processes of societal importance, including selective enantiomer production, production of specialty chemicals, pharmaceuticals, and fat splitting. Continuous enzymatic reactive separation in nanostructured bijels could have transformative impact on enantiomeric pharmaceutical production, a class of reactions with significant economic potential.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
化学过程的加剧是在可持续制造的社会需求的驱动下,旨在减少能源需求并最大程度地影响环境影响的过程。连续执行同时催化反应和分离的膜反应器是该技术的重要例子。当被膜分离的流体相具有不同的极性(例如,油和水)时,可以对油溶剂试剂进行反应并与水溶性产物(反之亦然)分离,从而进一步增加了这些系统的柔韧性。由于能够将酶固定为催化剂,可以在膜内的油/水接口处驱动生化反应,因此膜反应器对制药行业产生了重大影响。由于酶催化的反应在轻度条件和pH值下起作用,因此它们被认为是对药物的连续反应分离的绿色加工方法。膜反应堆还可以通过去除非活性或有害化学物种来减少农业肥料和除草剂的环境影响。这样的过程还可能影响植物油的加工,以形成特殊产品,以供饮食补充剂,婴儿配方,药品,化妆品,食品和饮料等饮食补充剂。然而,在这些系统中,确定反应速率的界面区域仅限于膜反应器孔中的油水界面。该研究计划的目的是通过引入具有催化剂的界面区域(称为Bijels)作为膜元素来改变基于膜的反应性分离领域。该材料允许多个关键功能发生在薄层中,其油水界面面积估计比​​传统膜大100倍。在这个项目中,将在比耶尔膜反应器中进行甘油三酸酯的水解反应,例如脂肪酸和甘油。这是一个具有工业意义的过程,每年的美国市场超过$25B。Bijels(BiContiul interfocientiul the Interfociend the Interfocy the Interforcy of the Interfored堵塞乳液凝胶)是通过通过诱导相位分离的关键点来淬灭可混杂的系统而形成的。这种淬火发生在存在纳米颗粒的存在下,纳米颗粒形成被困在界面上的堵塞层。由于比耶尔膜中油和水的特殊双重排列,因此获得了高界面区域,从而使界面区域随着比耶尔膜厚度的增加而增加。此外,Bijels具有弯曲的连续油结构域,并与弯曲的连续水域交织在一起。该界面稳定并用纳米颗粒进行装饰,这些纳米颗粒也可以支持固定的酶。研究团队将基于他们先前的成功制造Bijels和通过称为溶剂转移引起的相分离(Strips)的可扩展方法来控制其内部微观结构的成功。研究人员还将以与韩国Pohang科学技术大学的合作为基础,在韩国,使用酶促催化的批处理模式反应性分离。基于这些进步,项目目标是开发基于Bijel的膜反应器,以促进试剂的异质酶催化反应和不同极性的产物,以进行连续反应和分离。膜反应器的性能将使用甘油三酸酯与水的脂肪酶催化反应进行评估,以形成甘油和脂肪酸。研究计划的具体目的包括(1)研究条带处理条件对Bijels的影响; (2)通过数学建模和实验证明酯连续水解; (3)减少膜传输限制以创建反应率有限的性能。该项目的成功完成将通过使用新型纳米结构液膜来实现过程的加强。研究团队将学习如何在社会重要性的过程中最佳地利用Bijel技术,包括选择性的对映体生产,特种化学品的生产,药品和脂肪分裂。纳米结构的比杰尔(Bijels)中的连续酶促反应性分离可能会对对映体药物生产产生变革性的影响,这是一类具有巨大经济潜力的反应。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来支持的。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fabrication and application of bicontinuous interfacially jammed emulsions gels
  • DOI:
    10.1063/5.0048797
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    15
  • 作者:
    G. Di Vitantonio;Tiancheng Wang;K. Stebe;Daeyeon Lee
  • 通讯作者:
    G. Di Vitantonio;Tiancheng Wang;K. Stebe;Daeyeon Lee
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kathleen Stebe其他文献

Cells Sense and Respond to Curvature by Patterning Stress Fibers and Undergoing Curvature Guided Migration
  • DOI:
    10.1016/j.bpj.2017.11.3034
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Kathleen Stebe
  • 通讯作者:
    Kathleen Stebe

Kathleen Stebe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kathleen Stebe', 18)}}的其他基金

Active Surface Agents: Enhanced Transport by Active Colloids at Fluid Interfaces
活性表面剂:活性胶体在流体界面处增强传输
  • 批准号:
    1943394
  • 财政年份:
    2020
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
Curvature gradient driven assembly of trapped and reconfigurable structures
俘获和可重构结构的曲率梯度驱动组件
  • 批准号:
    1607878
  • 财政年份:
    2016
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
Particle/Protein Interaction and Migration via Anisotropic Membrane Deformation
通过各向异性膜变形实现颗粒/蛋白质相互作用和迁移
  • 批准号:
    1133267
  • 财政年份:
    2012
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Continuing Grant
Directed Assembly by Capillarity
毛细管作用定向组装
  • 批准号:
    1066284
  • 财政年份:
    2011
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Continuing Grant
Drop detachment modes in microfluidics devices
微流体装置中的液滴分离模式
  • 批准号:
    0651035
  • 财政年份:
    2007
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Continuing Grant
MRI/Engineering Equipment Proposal: Acquisition of a Multi-user Imaging Ellipsometer
MRI/工程设备提案:购买多用户成像椭偏仪
  • 批准号:
    0318241
  • 财政年份:
    2003
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
Evaporating Fluid Microstructures: A Means of Directing Nanoparticle Assembly
蒸发流体微观结构:引导纳米粒子组装的一种方法
  • 批准号:
    0244592
  • 财政年份:
    2003
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
Measuring the Kinetics of Surfactant Adsorptive - Desorptive Exchange: The Role of Surfactant Structure and Charge
测量表面活性剂吸附-解吸交换动力学:表面活性剂结构和电荷的作用
  • 批准号:
    9520972
  • 财政年份:
    1996
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Continuing Grant
Engineering Research Equipment: Total Internal Reflectance Fluorescence (TIRF) for Bioengineering at Interfaces
工程研究设备:用于界面生物工程的全内反射荧光 (TIRF)
  • 批准号:
    9500468
  • 财政年份:
    1995
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
U.S.-France Cooperative Research: Characterization of Surfactant Mass Transfer Kinetics and their Impact on Confined Multi-Phase Flows
美法合作研究:表面活性剂传质动力学的表征及其对受限多相流的影响
  • 批准号:
    9217202
  • 财政年份:
    1993
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant

相似国自然基金

耕地利用可持续集约化对可持续发展目标(SDGs)的响应机制与调控路径研究
  • 批准号:
    42371292
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
磷肥—土壤—作物匹配调控集约化玉米磷高效利用的模拟研究
  • 批准号:
    32301699
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
减量规划导向下城市工业用地利用集约化转型机制与政策优化研究
  • 批准号:
    72304242
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
活性铁对集约化海水养殖海湾沉积有机碳的保存途径及结合机制研究
  • 批准号:
    42266001
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
活性铁对集约化海水养殖海湾沉积有机碳的保存途径及结合机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CDS&E: Multiscale Process Intensification of Direct Catalytic Hydrogenation of CO2 to Hydrocarbons via Cooperative Tandem Catalysis
CDS
  • 批准号:
    2245474
  • 财政年份:
    2023
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
Process intensification for green NH3 via advanced membrane separation and catalysts
通过先进的膜分离和催化剂强化绿色 NH3 的工艺
  • 批准号:
    21H04630
  • 财政年份:
    2021
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
SBIR Phase I: Intensification of propylene oxide manufacture via solid-catalyst design
SBIR 第一阶段:通过固体催化剂设计强化环氧丙烷生产
  • 批准号:
    1746827
  • 财政年份:
    2018
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Standard Grant
Valorising Waste from Sugar Cane and Associated Industries via Innovations in Pre-treatment, Biotransformation and Process Intensification [vWa]
通过预处理、生物转化和工艺强化方面的创新,提高甘蔗及相关行业废物的价值 [vWa]
  • 批准号:
    104333
  • 财政年份:
    2018
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Collaborative R&D
Newton Bhabha Industrial Waste: Valorising Waste from Sugar Cane Industries via Innovations in Pretreatment, Biotransformation and Intensification
牛顿巴巴工业废物:通过预处理、生物转化和集约化创新,提高甘蔗工业废物的价值
  • 批准号:
    BB/S011951/1
  • 财政年份:
    2018
  • 资助金额:
    $ 41.7万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了