CAREER: Deconstructing Proton Transport through Atomically Thin Membranes

职业:解构通过原子薄膜的质子传输

基本信息

  • 批准号:
    1944134
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Membrane technologies have the potential to play a transformative role in addressing energy scarcity, which impacts the lives of millions of people. Atomically-thin two-dimensional (2D) materials represent a new kind of membrane material. 2D materials allow subatomic particles (e.g., protons) to selectively pass through the membrane while blocking even small gas atoms such as helium. The ability to separate protons from other atoms and molecules will enable disruptive innovations in energy generation and conversion, chemical processing and separations, electronics, and environmental protection. The project aims to develop fundamental understanding of proton transport through 2D materials. These scientific insights will be leveraged to develop novel catalytic and separation processes that serve to advance the U.S. economy and national security. A comprehensive education and outreach plan will complement and aid research efforts by a) reinforcing positive public perception towards science, engineering and mathematics and b) training the next-generation of scientists.Atomically-thin 2D materials such as graphene and hexagonal boron nitride offer fundamentally new opportunities to probe and control mass-transport. Pristine monolayer graphene and hexagonal boron nitride are impermeable to helium atoms but allow for proton transport. Selective proton transport through 2D materials offers transformative opportunities for fuel cells, isotope separations, hydrogen purification, photo-detectors, and artificial photosynthesis. However, a comprehensive understanding of proton transport mechanisms through 2D materials remains elusive. The overall objective of project is to develop fundamental understanding of the mechanisms governing proton transport through 2D materials. State-of-the-art advances in in-situ metrology will be used to study proton permeation through 2D materials. These fundamental insights on proton transport will be used to develop novel catalytic and separation processes that are of interest to the U.S. economy and national security. The research is integrated with a comprehensive education and outreach plan that focuses on i) providing under-represented and under-served groups with research internships for undergraduate and high-school students and engaging with their high-school teachers; ii) collaboration with professionals to develop content for outreach and dissemination of research findings via social media platforms; and iii) community engagement with hands-on science experiments via outreach activities at Vanderbilt University and the Nashville area.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
膜技术有潜力在解决影响数百万人生活的能源短缺问题上发挥变革性作用。原子薄二维(2D)材料代表了一种新型膜材料。二维材料允许亚原子粒子(例如质子)选择性地穿过膜,同时阻挡甚至很小的气体原子,例如氦气。将质子与其他原子和分子分离的能力将使能源产生和转换、化学加工和分离、电子和环境保护领域的颠覆性创新成为可能。该项目旨在加深对二维材料质子传输的基本了解。这些科学见解将用于开发新颖的催化和分离工艺,以促进美国经济和国家安全。全面的教育和推广计划将通过以下方式补充和帮助研究工作:a)加强公众对科学、工程和数学的积极认知;b)培训下一代科学家。石墨烯和六方氮化硼等原子薄二维材料从根本上提供了探索和控制公共交通的新机会。原始的单层石墨烯和六方氮化硼不能渗透氦原子,但允许质子传输。通过二维材料的选择性质子传输为燃料电池、同位素分离、氢纯化、光电探测器和人工光合作用提供了变革机会。然而,对二维材料质子传输机制的全面理解仍然难以实现。该项目的总体目标是加深对二维材料质子传输机制的基本了解。原位计量学的最先进技术将用于研究二维材料的质子渗透。这些关于质子传输的基本见解将用于开发对美国经济和国家安全感兴趣的新型催化和分离过程。该研究与综合教育和推广计划相结合,该计划的重点是:i) 为本科生和高中生提供代表性不足和服务不足的群体提供研究实习机会,并与他们的高中教师互动; ii) 与专业人士合作开发内容,通过社交媒体平台推广和传播研究成果; iii) 通过范德比尔特大学和纳什维尔地区的外展活动,社区参与实践科学实验。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Subatomic species transport through atomically thin membranes: Present and future applications
  • DOI:
    10.1126/science.abd7687
  • 发表时间:
    2021-11-05
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Kidambi, Piran R.;Chaturvedi, Pavan;Moehring, Nicole K.
  • 通讯作者:
    Moehring, Nicole K.
An Evolving Insight into Metal Organic Framework-Functionalized Membranes for Water and Wastewater Treatment and Resource Recovery
  • DOI:
    10.1021/acs.iecr.1c00543
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Tin Le;Xi Chen;Hang Dong;W. Tarpeh;Adelaida Perea-Cachero;J. Coronas;Stephen M. Martin;Munirah M
  • 通讯作者:
    Tin Le;Xi Chen;Hang Dong;W. Tarpeh;Adelaida Perea-Cachero;J. Coronas;Stephen M. Martin;Munirah M
Facile Size-Selective Defect Sealing in Large-Area Atomically Thin Graphene Membranes for Sub-Nanometer Scale Separations
  • DOI:
    10.1021/acs.nanolett.0c01934
  • 发表时间:
    2020-08-12
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Cheng, Peifu;Kelly, Mattigan M.;Kidambi, Piran R.
  • 通讯作者:
    Kidambi, Piran R.
Nanoporous Atomically Thin Graphene Filters for Nanoscale Aerosols
  • DOI:
    10.1021/acsami.2c10827
  • 发表时间:
    2022-08-29
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Cheng, Peifu;Espano, Jeremy;Kidambi, Piran R.
  • 通讯作者:
    Kidambi, Piran R.
Scalable synthesis of nanoporous atomically thin graphene membranes for dialysis and molecular separations via facile isopropanol-assisted hot lamination
  • DOI:
    10.1039/d0nr07384a
  • 发表时间:
    2021-02-07
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Cheng, Peifu;Moehring, Nicole K.;Kidambi, Piran R.
  • 通讯作者:
    Kidambi, Piran R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Piran Kidambi其他文献

Piran Kidambi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

气象扰动下强化土壤缓冲约束的农田生态韧性解构及时空格局模拟
  • 批准号:
    42301112
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数字平台生态系统场景下旅游企业间竞合关系的权力逻辑解构:来源、失衡和后果
  • 批准号:
    72372164
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
基于广义定转子拓扑解构的爬壁机器人电磁驱动-吸附一体化机理研究
  • 批准号:
    52305022
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于全文本引文解构的引用失范行为识别与生成机理研究
  • 批准号:
    72304181
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基础设施综合开发异质融资网络特征解构、双向演化与适应性提升
  • 批准号:
    72371189
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目

相似海外基金

SUPERSLUG: Deconstructing sediment superslugs as a legacy of extreme flows
SUPERSLUG:解构沉积物超级段塞作为极端流动的遗产
  • 批准号:
    NE/Z00022X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Deconstructing the brain circuits of reward-seeking
解构寻求奖励的大脑回路
  • 批准号:
    DE230100401
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Early Career Researcher Award
Deconstructing the Checkpoints of Necroptosis
解构坏死性凋亡的检查点
  • 批准号:
    BB/X007383/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Deconstructing the sertonin system in the mouse brain
解构小鼠大脑中的血清素系统
  • 批准号:
    10656870
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Deconstructing brainstem circuits for visceral senses
解构内脏感觉的脑干回路
  • 批准号:
    10591627
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了