CAREER: Nonlinear Models and Regularization for Infinite-Dimensional Inverse Problems
职业:无限维反问题的非线性模型和正则化
基本信息
- 批准号:1943201
- 负责人:
- 金额:$ 53.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In recent years, numerous data-driven applications have produced significant improvements in the quality of life across society. The resulting deluge of big data has given rise to computational and algorithmic challenges that are not addressed by traditional statistical paradigms. Data science is now providing new perspectives on how to tackle these challenges, particularly with respect to model-based inference and data acquisition. Yet, in many applications, there exists a nontrivial gap between the mathematical modeling of a physical phenomenon and the model approximation used to facilitate computations. This research project seeks to narrow this gap through a disciplined approach that combines new signal models and new optimization problem formulations that would lead to improved numerical algorithms. The project is expected to have an impact on many applications in signal processing, imaging science, and statistics. The principal investigator will mentor students at all levels through various outreach activities, and will proactively encourage participation from underrepresented groups.This research addresses fundamental questions in important data science applications which are described by infinite-dimensional models, such as in super-resolution imaging and non-parametric density estimation. In the first phase, a sampling theory will be developed together with provably robust and efficient algorithms for a class of piecewise polynomials, such a framework being sufficiently flexible to cover a variety of practical applications. Learning this model from limited observations will be formulated as a regularized optimization problem; its non-asymptotic theory will be established by leveraging insights from geometric functional analysis, high-dimensional probability, and convex optimization. In the second phase, by leveraging these piecewise polynomial models, an optimization theory will be established to solve a set of selected infinite-dimensional inverse problems without incurring the distortion traditionaly due to discretization. The effectiveness of the developed methods will be demonstrated over a set of imaging data measurements.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,大量数据驱动的应用程序显着改善了整个社会的生活质量。由此产生的大数据洪流带来了传统统计范式无法解决的计算和算法挑战。数据科学现在为如何应对这些挑战提供了新的视角,特别是在基于模型的推理和数据采集方面。然而,在许多应用中,物理现象的数学建模与用于促进计算的模型近似之间存在着巨大的差距。该研究项目旨在通过一种严格的方法来缩小这一差距,该方法结合了新的信号模型和新的优化问题公式,从而改进了数值算法。该项目预计将对信号处理、成像科学和统计学领域的许多应用产生影响。首席研究员将通过各种外展活动指导各级学生,并积极鼓励代表性不足的群体参与。这项研究解决了由无限维模型描述的重要数据科学应用中的基本问题,例如超分辨率成像和非参数密度估计。在第一阶段,将开发采样理论以及可证明稳健且高效的一类分段多项式算法,这样的框架足够灵活,可以覆盖各种实际应用。从有限的观察中学习这个模型将被表述为正则化的优化问题;其非渐近理论将利用几何泛函分析、高维概率和凸优化的见解来建立。在第二阶段,通过利用这些分段多项式模型,将建立优化理论来解决一组选定的无限维反问题,而不会产生传统上由于离散化而造成的失真。所开发方法的有效性将通过一组成像数据测量得到证明。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low-Rank Matrix Estimation from Rank-One Projections by Unlifted Convex Optimization
通过未提升凸优化从一阶投影进行低阶矩阵估计
- DOI:10.1137/20m1330099
- 发表时间:2021
- 期刊:
- 影响因子:1.5
- 作者:Bahmani, Sohail;Lee, Kiryung
- 通讯作者:Lee, Kiryung
Sub-NYQUIST Multichannel Blind Deconvolution
- DOI:10.1109/icassp39728.2021.9413856
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:S. Mulleti;Kiryung Lee;Yonina C. Eldar
- 通讯作者:S. Mulleti;Kiryung Lee;Yonina C. Eldar
Sketching Low-Rank Matrices With a Shared Column Space by Convex Programming
- DOI:10.1109/jsait.2023.3283973
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:R. S. Srinivasa;Seonho Kim;Kiryung Lee
- 通讯作者:R. S. Srinivasa;Seonho Kim;Kiryung Lee
Generalized Notions of Sparsity and Restricted Isometry Property. Part II: Applications
稀疏性和受限等距性质的广义概念。
- DOI:10.1007/s00041-020-09809-8
- 发表时间:2021
- 期刊:
- 影响因子:1.2
- 作者:Junge, Marius;Lee, Kiryung
- 通讯作者:Lee, Kiryung
Approximately low-rank recovery from noisy and local measurements by convex program
通过凸程序从噪声和局部测量中近似低秩恢复
- DOI:10.1093/imaiai/iaad013
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Lee, Kiryung;Sharma, Rakshith Srinivasa;Junge, Marius;Romberg, Justin
- 通讯作者:Romberg, Justin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kiryung Lee其他文献
Stable estimation of pulses of unknown shape from multiple snapshots via ESPRIT
通过 ESPRIT 从多个快照中稳定估计未知形状的脉冲
- DOI:
10.1109/tsp.2024.3403494 - 发表时间:
2023 - 期刊:
- 影响因子:5.4
- 作者:
Meghna Kalra;Kiryung Lee - 通讯作者:
Kiryung Lee
Blind gain and phase calibration for low-dimensional or sparse signal sensing via power iteration
通过功率迭代进行低维或稀疏信号传感的盲增益和相位校准
- DOI:
10.1109/sampta.2017.8024422 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Yanjun Li;Kiryung Lee;Y. Bresler - 通讯作者:
Y. Bresler
Identifiability in Blind Deconvolution under Minimal Assumptions
最小假设下盲解卷积的可识别性
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yanjun Li;Kiryung Lee;Y. Bresler - 通讯作者:
Y. Bresler
Joint Optimization of Image Registration and Comparametric Exposure Compensation Based on the Lucas-Kanade Algorithm
基于Lucas-Kanade算法的图像配准与对比曝光补偿联合优化
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Dong Sik Kim;Su Yeon Lee;Kiryung Lee - 通讯作者:
Kiryung Lee
Stability Analysis of Resolving Pulses of Unknown Shape from Compressive Fourier Measurements
压缩傅立叶测量中分辨未知形状脉冲的稳定性分析
- DOI:
10.1109/sampta59647.2023.10301368 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Meghna Kalra;Kiryung Lee - 通讯作者:
Kiryung Lee
Kiryung Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
考虑静风效应和振幅影响的超大跨度悬索桥非线性颤振演化机理研究
- 批准号:52378537
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
多晶钙钛矿X射线探测器非线性电流响应机理与抑制研究
- 批准号:62304236
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非线性模型结构性误差的动力学订正方法研究
- 批准号:42375059
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
复杂网络上非线性动力系统临界点的严格边界
- 批准号:12305038
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
复杂非线性系统的预设性能鲁棒输出调节问题及其应用
- 批准号:62373156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
- 批准号:
2340762 - 财政年份:2024
- 资助金额:
$ 53.09万 - 项目类别:
Continuing Grant
Decoding ensemble dynamics from cortico-amygdalar circuits during social choice
在社会选择过程中从皮质-杏仁核回路解码整体动态
- 批准号:
10723932 - 财政年份:2023
- 资助金额:
$ 53.09万 - 项目类别:
Systems Approach to Understanding Cardiovascular Disease and Arrhythmias - Cell diversity in the cardiovascular system, cell-autonomous and cell-cell signaling
了解心血管疾病和心律失常的系统方法 - 心血管系统中的细胞多样性、细胞自主和细胞间信号传导
- 批准号:
10386681 - 财政年份:2021
- 资助金额:
$ 53.09万 - 项目类别:
Understanding the dynamics of cochlear amplification
了解耳蜗放大的动力学
- 批准号:
10531629 - 财政年份:2021
- 资助金额:
$ 53.09万 - 项目类别:
Understanding the dynamics of cochlear amplification
了解耳蜗放大的动力学
- 批准号:
10168888 - 财政年份:2020
- 资助金额:
$ 53.09万 - 项目类别: