CAREER: Combining Human Judgment and Data-Driven Approaches for the Development of Interpretable Models of Student Behaviors: Applications to Computer Science Education

职业:结合人类判断和数据驱动的方法来开发可解释的学生行为模型:在计算机科学教育中的应用

基本信息

  • 批准号:
    1942962
  • 负责人:
  • 金额:
    $ 69.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Debugging, the process of identifying and resolving defects in computer programs, is an important skill to acquire while learning to program. However, many novice programmers, with good understanding of programming, struggle with the debugging process. Despite this, debugging is rarely explicitly taught. This project will use data-driven approaches to study the debugging processes of novice programmers enrolled in a college level introductory computer science course, identify the meaningful elements of their debugging behaviors and how those elements combine to form common debugging strategies. This knowledge will be used to create computer algorithms that are able to identify which debugging strategies students use when programming. These algorithms will be designed to be interpretable by students and instructors. These algorithms will be used to support students in learning efficient debugging strategies, assist instructors in monitoring their students' debugging practices, and help future K-12 teachers in learning about the meaningful elements of the debugging process. The results of this project will positively impact the state of computer science education in both college level introductory computer science courses and in the K-12 level by supporting future teachers in learning how to foster important debugging skills.The project will contribute to the state of the art in student behavior modeling by formalizing an approach that combines knowledge engineering and machine learning to create interpretable models of student behavior. It will provide empirical evidence illustrating how the interpretability of a student behavior model can provide powerful pedagogical advantages beyond its accuracy at predicting a student's behavior. The proposed approach will be applied to study debugging strategies in college level introductory computer science courses through the log data collected from an online problem-solving platform named PrairieLearn. The benefits of interpretable models will be compared to those of traditional machine learning approaches, using rigorous research to identify the best methods for supporting students and instructors. Specifically, the project will apply this approach, leveraging the increased interpretability of the models it creates, to: (1) better understand students' debugging behaviors; (2) support students in self-reflecting about their debugging strategies and developing efficient debugging practices; (3) provide instructors with actionable information about their students' debugging processes; and (4) support future teachers in acquiring expertise in formulating hypotheses about students' debugging strategies. By doing so, the project will contribute to general knowledge about debugging processes for novice programmers, and establish methods to support college students and future K-12 teachers in acquiring explicit knowledge about the debugging process.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
调试是计算机程序中识别和解决缺陷的过程,是学习编程时获取的重要技能。但是,许多新手程序员对编程有很好的了解,并在调试过程中挣扎。尽管如此,调试很少是明确教授的。该项目将使用数据驱动的方法来研究参加大学级入门科学课程的新手程序员的调试过程,确定其调试行为的有意义的要素以及这些元素如何结合以形成常见的调试策略。这些知识将用于创建计算机算法,这些算法能够识别学生在编程时使用的调试策略。这些算法将设计为可解释的学生和讲师。这些算法将用于支持学生学习有效的调试策略,协助教师监视学生的调试实践,并帮助未来的K-12教师学习调试过程的有意义的要素。该项目的结果将通过支持未来的教师学习如何培养重要的调试技能,从而在大学级别的计算机科学课程和K-12级上对计算机科学教育的状况产生积极影响。该项目将有助于该项目的状态通过形式化一种结合知识工程和机器学习以创建可解释的学生行为模型的方法来建模的艺术。它将提供经验证据,说明学生行为模型的可解释性如何在预测学生行为的准确性之外提供强大的教学优势。提出的方法将应用于大学级别的计算机科学课程中,通过从在线解决问题的平台收集的日志数据来研究调试策略。使用严格的研究来确定支持学生和讲师的最佳方法,将可解释模型的好处与传统机器学习方法的好处进行比较。具体而言,该项目将采用这种方法,利用它创建的模型的增加的解释性,以:(1)更好地了解学生的调试行为; (2)支持学生对他们的调试策略进行自我反省,并发展有效的调试实践; (3)为讲师提供有关学生调试过程的可行信息; (4)支持未来的教师获得有关学生调试策略的假设的专业知识。通过这样做,该项目将有助于有关新手程序员调试流程的一般知识,并建立支持大学生和未来K-12教师的方法,以获取有关调试过程的明确知识。该奖项反映了NSF的法定任务并被视为值得通过基金会的智力优点和更广泛的影响审查标准来通过评估来支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using submission log data to investigate novice programmers’ employment of debugging strategies
使用提交日志数据调查新手程序员调试策略的使用
  • DOI:
    10.1145/3576050.3576094
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liu, Qianhui;Paquette, Luc
  • 通讯作者:
    Paquette, Luc
Investigating the reliability of aggregate measurements of learning process data: From theory to practice
  • DOI:
    10.1111/jcal.12951
  • 发表时间:
    2024-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingbin Zhang;Yafei Ye;Luc Paquette;Yibo Wang;Xiaoyong Hu
  • 通讯作者:
    Yingbin Zhang;Yafei Ye;Luc Paquette;Yibo Wang;Xiaoyong Hu
Combining latent profile analysis and programming traces to understand novices’ differences in debugging
结合潜在的配置文件分析和编程跟踪来了解新手在调试中的差异
  • DOI:
    10.1007/s10639-022-11343-7
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Zhang, Yingbin;Paquette, Luc;Pinto, Juan D.;Liu, Qianhui;Fan, Aysa Xuemo
  • 通讯作者:
    Fan, Aysa Xuemo
Utilizing programming traces to explore and model the dimensions of novices' code‐writing skill
利用编程痕迹探索和建模新手代码维度——写作能力
Investigating the Relationship Between Programming Experience and Debugging Behaviors in an Introductory Computer Science Course
在计算机科学入门课程中调查编程经验与调试行为之间的关系
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pinto, Juan D.;Liu, Qianhui;Paquette, Luc;Zhang, Yingbin;Fan, Aysa X.
  • 通讯作者:
    Fan, Aysa X.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luc Paquette其他文献

Investigating SMART Models of Self-Regulation and their Impact on Learning
研究自我调节的 SMART 模型及其对学习的影响
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stephen Hutt;Jaclyn L. Ocumpaugh;J. M. Alexandra;L. Andres;Nigel Bosch;Luc Paquette;Gautam Biswas;Ryan S. Baker
  • 通讯作者:
    Ryan S. Baker
Interpretable neural networks vs. expert-defined models for learner behavior detection
可解释的神经网络与专家定义的学习者行为检测模型
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Juan D. Pinto;Luc Paquette;Nigel Bosch
  • 通讯作者:
    Nigel Bosch
Towards a Unified Framework for Evaluating Explanations
建立一个评估解释的统一框架
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Juan D. Pinto;Luc Paquette
  • 通讯作者:
    Luc Paquette
Detector-driven classroom interviewing: focusing qualitative researcher time by selecting cases in situ
探测器驱动的课堂访谈:通过现场选择案例来集中定性研究人员的时间
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryan S. Baker;Stephen Hutt;Nigel Bosch;Jaclyn L. Ocumpaugh;Gautam Biswas;Luc Paquette;J. M. A. Andres;Nidhi Nasiar;Anabil Munshi
  • 通讯作者:
    Anabil Munshi

Luc Paquette的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luc Paquette', 18)}}的其他基金

Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
  • 批准号:
    2301172
  • 财政年份:
    2023
  • 资助金额:
    $ 69.59万
  • 项目类别:
    Continuing Grant

相似国自然基金

破译疾病组合之遗传结构:新分析框架及在心血管医学和精神病学中的应用
  • 批准号:
    31900495
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于深度学习分析H5禽流感病毒人类适应性突变组合及潜在危害
  • 批准号:
    31900155
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
变化环境下极端干旱组合遭遇风险与脆弱性评估
  • 批准号:
    51809242
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
1.8-1.0Ma泥河湾盆地植被和气候变化及对古人类演化的影响
  • 批准号:
    41877433
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
黄土高原人工扰动生境中蜗牛组合特征及其对人类活动影响程度的指示
  • 批准号:
    41702195
  • 批准年份:
    2017
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Combining Radiation, Allogeneic Natural Killer Immunotherapy, and PD-L1 blockade in Dogs with Naturally-Occurring Melanoma
结合放疗、同种异体自然杀伤免疫疗法和 PD-L1 阻断治疗患有天然黑色素瘤的狗
  • 批准号:
    10679952
  • 财政年份:
    2023
  • 资助金额:
    $ 69.59万
  • 项目类别:
Combining repetitive element-specific T cells with epigenetic therapy to treat ovarian cancer
重复元件特异性 T 细胞与表观遗传疗法相结合治疗卵巢癌
  • 批准号:
    10613918
  • 财政年份:
    2022
  • 资助金额:
    $ 69.59万
  • 项目类别:
Combining a novel framework for psychopathology with a precision medicine approach to understand the heterogeneous response to abstinence from alcohol
将精神病理学的新颖框架与精准医学方法相结合,以了解戒酒的异质反应
  • 批准号:
    10473770
  • 财政年份:
    2020
  • 资助金额:
    $ 69.59万
  • 项目类别:
Combining a novel framework for psychopathology with a precision medicine approach to understand the heterogeneous response to abstinence from alcohol
将精神病理学的新颖框架与精准医学方法相结合,以了解戒酒的异质反应
  • 批准号:
    10259703
  • 财政年份:
    2020
  • 资助金额:
    $ 69.59万
  • 项目类别:
Estimating BrAC/BAC from Transdermal Alcohol: Combining First-Principles Physiological Models with Machine-Learning to Create Software to Optimally Process and Quantitatively Interpret Biosensor Data
估算透皮酒精中的 BrAC/BAC:将第一原理生理模型与机器学习相结合,创建软件以优化处理和定量解释生物传感器数据
  • 批准号:
    10402188
  • 财政年份:
    2018
  • 资助金额:
    $ 69.59万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了