CAREER: Towards a Secure and Reliable Internet of Things through Automated Model Extraction and Analysis

职业:通过自动模型提取和分析迈向安全可靠的物联网

基本信息

  • 批准号:
    1942235
  • 负责人:
  • 金额:
    $ 48.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

The Internet of Things (IoT) is expected to transform the quality of our lives in various domains. However, the Mirai botnet and other cyber attacks that exploited vulnerabilities in IoT devices have revealed major security and privacy issues in the current deployments of IoT. These incidents indicate the importance of securing the IoT ecosystem as a precursor to achieving the transformative power of IoT. The IoT ecosystem involves a variety of components including constrained devices, edge devices, mobile devices, and the cloud. Securing an IoT deployment requires a deep understanding of the attack surface of each component and the attack surfaces that are formed as a result of the interactions between various components. However, the complexity of software that powers these components poses a big challenge. The goal of this project is to achieve a holistic view of security engineering using automated model extraction and model guided analysis. The project will yield methodologies, tools, and educational material that will empower the IoT industry in terms of secure software development and deployment practices. Additionally, the project will help broaden participation of women and other underrepresented groups in IoT security, formal methods, and software engineering research.This project will investigate scalable analysis of system software to reason about system-level behavior. The key insight is that software is often developed according to a programming model, which imposes certain structural and semantic associations for data and code. This knowledge provides a great opportunity to deal with the complexity of code as it provides guidance on how to analyze components in isolation and how to effectively explore the state space during analysis. Specifically, the project builds on three research thrusts: 1) Formalization of programming models that are used in system software, 2) Automated model extraction and model guided analysis that leverage formally defined programming models and the integration of a variety of program analysis techniques, and 3) System-level analysis of IoT systems through integration of automatically extracted component models with run-time data. The automatically constructed system-level model will be subjected to rigorous analysis and will support effective run-time monitoring of IoT deployments for improved usability, reliability, privacy, and security. A novel, incremental, and model checking based regression analysis will enable safe and secure evolution of IoT systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物联网 (IoT) 有望在各个领域改变我们的生活质量。然而,Mirai 僵尸网络和其他利用物联网设备漏洞的网络攻击暴露了当前物联网部署中的主要安全和隐私问题。这些事件表明,确保物联网生态系统的安全是实现物联网变革力量的先导。物联网生态系统涉及各种组件,包括受限设备、边缘设备、移动设备和云。确保物联网部署的安全需要深入了解每个组件的攻击面以及由于各个组件之间的交互而形成的攻击面。然而,为这些组件提供支持的软件的复杂性带来了巨大的挑战。该项目的目标是使用自动模型提取和模型引导分析来实现安全工程的整体视图。该项目将产生方法、工具和教育材料,为物联网行业提供安全软件开发和部署实践方面的支持。此外,该项目将有助于扩大女性和其他代表性不足的群体对物联网安全、形式化方法和软件工程研究的参与。该项目将研究系统软件的可扩展分析,以推理系统级行为。关键的见解是软件通常是根据编程模型开发的,该模型对数据和代码强加了某些结构和语义关联。这些知识为处理代码的复杂性提供了很好的机会,因为它提供了如何单独分析组件以及如何在分析过程中有效探索状态空间的指导。具体来说,该项目建立在三个研究重点之上:1)系统软件中使用的编程模型的形式化,2)利用正式定义的编程模型和各种程序分析技术的集成的自动模型提取和模型引导分析,以及3)通过将自动提取的组件模型与运行时数据集成,对物联网系统进行系统级分析。自动构建的系统级模型将接受严格的分析,并将支持物联网部署的有效运行时监控,以提高可用性、可靠性、隐私和安全性。基于新颖、增量和模型检查的回归分析将实现物联网系统的安全可靠的发展。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analyzing system software components using API model guided symbolic execution
使用 API 模型引导的符号执行分析系统软件组件
  • DOI:
    10.1007/s10515-020-00276-5
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Yavuz, Tuba;Bai, Ken
  • 通讯作者:
    Bai, Ken
SEESAW: a tool for detecting memory vulnerabilities in protocol stack implementations
SEESAW:用于检测协议栈实现中内存漏洞的工具
  • DOI:
    10.1145/3487212.3487345
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fowze, Farhaan;Yavuz, Tuba
  • 通讯作者:
    Yavuz, Tuba
Verifying Absence of Hardware-Software Data Races using Counting Abstraction
使用计数抽象验证硬件软件数据争用的存在
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yavuz, Tuba
  • 通讯作者:
    Yavuz, Tuba
A Study on the Testing of Android Security Patches
Security Analysis of IoT Frameworks using Static Taint Analysis
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tuba Yavuz其他文献

Detecting Callback Related Deep Vulnerabilities in Linux Device Drivers
Specification, verification, and synthesis using extended state machines with callbacks
使用带回调的扩展状态机进行规范、验证和综合
Action Language Verifier
动作语言验证器
Tutorial: Detecting Memory Vulnerabilities in the Components of System Code using PROMPT
教程:使用 PROMPT 检测系统代码组件中的内存漏洞
DTjRTL: A Configurable Framework for Automated Hardware Trojan Insertion at RTL
DTjRTL:用于在 RTL 自动插入硬件木马的可配置框架

Tuba Yavuz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tuba Yavuz', 18)}}的其他基金

Collaborative Research: SHF: Small: Towards Variability-Aware Software Analysis and Testing
协作研究:SHF:小型:迈向可变性感知软件分析和测试
  • 批准号:
    2211588
  • 财政年份:
    2022
  • 资助金额:
    $ 48.71万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Property-specific Hardware-oriented Formal Verification Modules for Embedded Systems
合作研究:FMitF:第一轨:嵌入式系统的面向属性的硬件形式验证模块
  • 批准号:
    2019283
  • 财政年份:
    2020
  • 资助金额:
    $ 48.71万
  • 项目类别:
    Standard Grant

相似国自然基金

基于极化码的可见光通信前向纠错及物理层安全编码研究
  • 批准号:
    61771222
  • 批准年份:
    2017
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
满足强完美前向安全性的单轮身份基和无证书认证密钥协商协议研究
  • 批准号:
    61502436
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
超前向安全数字签名理论及其应用的研究
  • 批准号:
    61272425
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
第二代小波及其在信息安全和数据压缩中的应用技术研究
  • 批准号:
    60773144
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
前向安全签名和前向安全门限签名的研究
  • 批准号:
    60703089
  • 批准年份:
    2007
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: NgOS: Towards Better Operating Systems: Fast, Secure, and Reliable
职业:NgOS:迈向更好的操作系统:快速、安全且可靠
  • 批准号:
    2239615
  • 财政年份:
    2023
  • 资助金额:
    $ 48.71万
  • 项目类别:
    Continuing Grant
Towards elucidating PTSD pathogenesis with ultra-portable and low-cost neuroimaging
通过超便携式和低成本的神经影像学阐明 PTSD 发病机制
  • 批准号:
    10644627
  • 财政年份:
    2023
  • 资助金额:
    $ 48.71万
  • 项目类别:
CAREER: Towards Secure and Usable IoT Authentication Under Constraints
职业:在约束下实现安全可用的物联网身份验证
  • 批准号:
    2144669
  • 财政年份:
    2022
  • 资助金额:
    $ 48.71万
  • 项目类别:
    Continuing Grant
CAREER: Towards Secure and Usable IoT Authentication Under Constraints
职业:在约束下实现安全可用的物联网身份验证
  • 批准号:
    2309550
  • 财政年份:
    2022
  • 资助金额:
    $ 48.71万
  • 项目类别:
    Continuing Grant
SDSU FUERTE: Faculty United towards Excellence in Research and Transformational Engagement
SDSU FUERTE:教师团结起来,致力于卓越的研究和变革参与
  • 批准号:
    10362383
  • 财政年份:
    2021
  • 资助金额:
    $ 48.71万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了