Collaborative Research: Integrating Physics and Generative Machine-Learning Models for Inverse Materials Design

合作研究:整合物理和生成机器学习模型进行逆向材料设计

基本信息

  • 批准号:
    1940166
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

This project is aimed to address a grand challenge in data-intensive materials science and engineering to find better materials with desired properties, often with the goal to enhance performance in specific applications. This project addresses this grand challenge with a specific focus on finding metal organic framework (MOF) materials that are used to separate gas mixtures and finding better battery materials for energy storage. The PIs will combine theoretical methods from statistical mechanics and condensed-matter physics, and physics-based models, to generate information-rich materials data which is integrated with generative machine learning (ML) algorithms to search a complex chemical design space efficiently and to train deep learning models for fast screening of materials properties. This project will be carried out by a multidisciplinary collaboration involving researchers from physics, materials science and engineering, computer science, and mathematics. The resulting multidisciplinary environment fosters training the next generation data savvy scientists who will engage in collaborative multidisciplinary research. Existing approaches for computational design of metal organic frameworks (MOF) and solid-state electrolyte materials are largely based on screening of known materials or enumerative search of hypothetical materials. This project develops a new approach that integrates first principles calculations, experimental data and abundant data generated by physics-based models to train generalized antagonistic network (GAN) models for efficient search of the materials design space, and to train deep convolutional neural network (DCNN) models for fast and accurate screening of properties of the GAN-generated candidate materials. Additionally, graph-based GAN models will be used for MOF topology exploration and can be applied to other nanomaterials designs. More specifically, the investigators will: 1) develop and exploit physics-based models for fast calculation of properties such as diffusivity, ion conductivity, and mechanical stability; 2) develop generative adversarial network (GAN) models with built-in physics rules for efficient exploration of the chemical design space for both MOF materials and solid electrolytes; 3) use persistence homology and Bravais lattice sequence representations of MOF materials and solid electrolytes, respectively, to build Deep Convolutional Neural Network (DCNN) models for fast and accurate prediction of the physical properties of generated materials; 4) apply high-level quantum-mechanical calculations for verification of discovered materials. Accomplishments from this project will lead to accelerated discovery of novel nanostructured materials for gas separation and energy storage, materials for lithium-ion batteries, novel data-driven scheme for materials design, and theoretical methods enabling implementation of advanced data science techniques. The highly interdisciplinary collaboration will offer students unique opportunities to interact with a variety of disciplines, and training the next-generation scientists with the mindset for multidiscipline collaborations. Educational and outreach activities will be developed and undertaken in conjunction with the proposed research activities.This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity, and is jointly supported by HDR and the Division of Materials Research within the NSF Directorate of Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在解决数据密集型材料科学和工程领域的巨大挑战,寻找具有所需性能的更好材料,通常目标是提高特定应用中的性能。该项目应对这一巨大挑战,重点关注寻找用于分离气体混合物的金属有机框架(MOF)材料以及寻找更好的储能电池材料。 PI 将结合统计力学和凝聚态物理学的理论方法以及基于物理的模型,生成信息丰富的材料数据,这些数据与生成机器学习 (ML) 算法集成,以有效搜索复杂的化学设计空间并训练用于快速筛选材料特性的深度学习模型。该项目将由多学科合作开展,涉及物理学、材料科学与工程、计算机科学和数学的研究人员。由此产生的多学科环境有利于培养下一代精通数据的科学家,他们将参与多学科协作研究。 金属有机框架(MOF)和固态电解质材料的现有计算设计方法主要基于已知材料的筛选或假设材料的枚举搜索。该项目开发了一种新方法,集成了第一原理计算、实验数据和基于物理的模型生成的大量数据,以训练广义对抗网络(GAN)模型以有效搜索材料设计空间,并训练深度卷积神经网络(DCNN) )用于快速准确筛选 GAN 生成的候选材料特性的模型。此外,基于图的 GAN 模型将用于 MOF 拓扑探索,并可应用于其他纳米材料设计。更具体地说,研究人员将:1)开发和开发基于物理的模型,用于快速计算扩散率、离子电导率和机械稳定性等特性; 2)开发具有内置物理规则的生成对抗网络(GAN)模型,以有效探索MOF材料和固体电解质的化学设计空间; 3)分别使用MOF材料和固体电解质的持久同源性和布拉维晶格序列表示来构建深度卷积神经网络(DCNN)模型,以快速准确地预测所生成材料的物理性质; 4)应用高级量子力学计算来验证已发现的材料。该项目的成就将加速发现用于气体分离和储能的新型纳米结构材料、锂离子电池材料、用于材料设计的新型数据驱动方案以及能够实施先进数据科学技术的理论方法。高度跨学科的合作将为学生提供与各种学科互动的独特机会,并培养具有多学科合作思维的下一代科学家。教育和推广活动将与拟议的研究活动一起制定和开展。该项目是国家科学基金会利用数据革命 (HDR) 大创意活动的一部分,并得到 HDR 和材料研究部的共同支持NSF 数学和物理科学理事会。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Emerging Halide Superionic Conductors for All-Solid-State Batteries: Design, Synthesis, and Practical Applications
  • DOI:
    10.1021/acsenergylett.2c00438
  • 发表时间:
    2022-05-13
  • 期刊:
  • 影响因子:
    22
  • 作者:
    Kwak, Hiram;Wang, Shuo;Jung, Yoon Seok
  • 通讯作者:
    Jung, Yoon Seok
Frustration in Super‐Ionic Conductors Unraveled by the Density of Atomistic States
原子态密度揭示了超离子导体的挫败感
  • DOI:
    10.1002/ange.202215544
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Shuo;Liu, Yunsheng;Mo, Yifei
  • 通讯作者:
    Mo, Yifei
Can Substitutions Affect the Oxidative Stability of Lithium Argyrodite Solid Electrolytes?
取代会影响锂银矿固体电解质的氧化稳定性吗?
  • DOI:
    10.1021/acsaem.1c03599
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Banik, Ananya;Liu, Yunsheng;Ohno, Saneyuki;Rudel, Yannik;Jiménez-Solano, Alberto;Gloskovskii, Andrei;Vargas-Barbosa, Nella M.;Mo, Yifei;Zeier, Wolfgang G.
  • 通讯作者:
    Zeier, Wolfgang G.
Superionic Conducting Halide Frameworks Enabled by Interface-Bonded Halides
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yifei Mo其他文献

Safety information on transgenic plants expressing Bacillus thuringiensis-Derived insect control protein
表达苏云金芽孢杆菌衍生昆虫控制蛋白的转基因植物的安全信息
  • DOI:
    10.1787/oecd_papers-v7-art35-en
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Yunsheng Liu;Yifei Mo
  • 通讯作者:
    Yifei Mo
Transition of nc-SiC powder surface into grain boundaries during sintering by molecular dynamics simulation and neutron powder diffraction
通过分子动力学模拟和中子粉末衍射研究烧结过程中 nc-SiC 粉末表面向晶界的转变
  • DOI:
    10.1524/zkri.2007.2007.suppl_26.255
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marcin Wojdyr;Yifei Mo;E. Grzanka;S. Stelmakh;S. Gierlotka;T. Proffen;T. W. Żerda;B. Palosz;I. Szlufarska
  • 通讯作者:
    I. Szlufarska
Assessing the Accuracy of Machine Learning Interatomic Potentials in Predicting the Elemental Orderings: A Case Study of Li-Al Alloys
评估机器学习原子间势在预测元素排序方面的准确性:锂铝合金案例研究
  • DOI:
    10.1016/j.actamat.2024.119742
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Yunsheng Liu;Yifei Mo
  • 通讯作者:
    Yifei Mo
Contrasting Reaction Modality between Electrochemical Sodiation and Lithiation in NiO Conversion Electrode Materials
NiO 转换电极材料中电化学钠化和锂化的反应方式对比
  • DOI:
    10.1017/s1431927615002421
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    K. He;Feng Lin;E. Stach;Yifei Mo;H. Xin;D. Su
  • 通讯作者:
    D. Su
Elucidating Interfacial Stability between Lithium Metal Anode and LiPON via In Situ Electron Microscopy
通过原位电子显微镜阐明锂金属阳极和 LiPON 之间的界面稳定性
  • DOI:
    10.21203/rs.3.rs-40576/v1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Zachary D. Hood;Xi Chen;R. Sacci;G. Veith;Xiaoming Liu;Yifei Mo;J. Niu;N. Dudney;M. Chi
  • 通讯作者:
    M. Chi

Yifei Mo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yifei Mo', 18)}}的其他基金

Collaborative Research: DMREF: Accelerated Data-Driven Discovery of Ion-Conducting Materials
合作研究:DMREF:加速数据驱动的离子导电材料发现
  • 批准号:
    2118838
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Guiding synthesis of nanoparticles with nanometric phase diagram and in situ X-ray diffraction
合作研究:用纳米相图和原位X射线衍射指导纳米颗粒的合成
  • 批准号:
    2004837
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SI2-SSI: Collaborative Research: A Robust High-Throughput Ab Initio Computation and Analysis Software Framework for Interface Materials Science
SI2-SSI:协作研究:用于界面材料科学的强大高通量从头计算和分析软件框架
  • 批准号:
    1550423
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

整合素β8亚基在猪树突状细胞免疫识别与活化过程中的作用与机制研究
  • 批准号:
    32373026
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于小胶质细胞极化分子网络的藏药鬼箭锦鸡儿抗缺血性脑中风功效组分和整合机制研究
  • 批准号:
    82374147
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
人乳头瘤病毒通过整合宿主细胞基因组促进宫颈癌细胞PD-L1高表达的分子机制研究
  • 批准号:
    32360041
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
锶银离子缓释钛表面通过线粒体自噬调控NLRP3炎症小体活化水平促进骨整合的机制研究
  • 批准号:
    82301139
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326020
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326021
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325835
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325837
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
  • 批准号:
    2344765
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了