Parametric Resonance as an Electromechanical Transduction Mechanism

参数共振作为机电转换机制

基本信息

  • 批准号:
    1936776
  • 负责人:
  • 金额:
    $ 34.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-15 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Parametric resonance as an electromechanical transduction mechanism This interdisciplinary research project will explore and exploit parametric excitation, a concept familiar to many as swings in playgrounds are driven by the rider bending and straightening to increase the amplitude of motion. When certain parameters of electrical circuits are modulated at a specific frequency by a mechanical input, such as changing the distance between two metal plates of a capacitor, energy can be transferred efficiently from mechanical to electrical domain. Using ultrasound as the mechanical drive at frequencies that are typically used for medical imaging deep in the body, and with proper design of an electrical circuit, parametric resonance is expected to result in high efficiency wireless charging of medical implants. The same concept can be used to harvest energy from vibrations in the environment in a large frequency range as well as to detect minute acoustic signals for underwater SONAR type applications. This project will thoroughly and systematically investigate the potential of this novel approach and will lead to demonstrative high-performance ultrasound based charging devices and sensors. In terms STEM education, experiments will be designed to instrument riders of swings with motion sensors to illustrate the parametric resonance concept as well as to demonstrate wireless charging of devices with ultrasound in water tanks to high school students. Video clips on experimental results of the project will also be prepared and broadcast through Georgia Tech's public video channel. The objective of the project will be achieved by a) analyzing parametric resonances of coupled mechanical and electrical resonators, including noise in the analysis for sensing applications while evaluating novel approaches such as piezoelectric resonator based inductor implementation, b) designing and implementing proof-of-concept devices to demonstrate broadband energy harvesting from low frequency vibrations, and low noise acoustic, vibration sensors based on the modeling framework and design guidelines developed, and c) fabricating and carefully characterizing wireless ultrasonic power transfer devices for biomedical implants in the 0.5-2MHz range using MEMS fabrication techniques. The complementary expertise of the research team in analytical modeling of nonlinear complex systems with deterministic and random excitations, device design, fabrication and characterization for applications covering low frequency vibrations for energy harvesting to medical ultrasound applications in the MHz range will be leveraged to achieve the targeted outcomes. The project will formulate new analytical and numerical models and will develop a new experimental framework for designing next-generation electromechanical sensors exploiting nonlinearity and resonance in different ways which can lead to a paradigm shift in transduction which heretofore depended predominantly on linear, passive properties of capacitive and piezoelectric devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
参数共振作为机电转换机制 这个跨学科研究项目将探索和利用参数激励,这是一个许多人都熟悉的概念,因为操场上的秋千是由骑手弯曲和伸直来增加运动幅度来驱动的。当电路的某些参数通过机械输入以特定频率调制时,例如改变电容器的两个金属板之间的距离,能量可以有效地从机械域转移到电气域。使用超声波作为机械驱动器,其频率通常用于身体深处的医学成像,并且通过适当的电路设计,参数共振有望实现医疗植入物的高效无线充电。相同的概念可用于从大频率范围内的环境振动中收集能量,以及检测水下声纳类型应用的微小声学信号。该项目将彻底、系统地研究这种新颖方法的潜力,并将产生基于示范性高性能超声波的充电设备和传感器。在 STEM 教育方面,将设计实验,为秋千上的骑手配备运动传感器,以说明参数共振概念,并向高中生演示水箱中超声波设备的无线充电。有关该项目实验结果的视频片段也将通过佐治亚理工学院的公共视频频道制作和播出。该项目的目标将通过以下方式实现:a)分析耦合机械和电气谐振器的参数谐振,包括传感应用分析中的噪声,同时评估新颖的方法,例如基于压电谐振器的电感器实现,b)设计和实现证明概念设备,用于展示从低频振动和低噪声声学振动传感器中收集宽带能量,这些传感器基于所开发的建模框架和设计指南,以及 c) 制造和仔细表征用于 0.5-2MHz 生物医学植入物的无线超声功率传输设备使用 MEMS 制造技术的范围。研究团队在具有确定性和随机激励的非线性复杂系统的分析建模、设备设计、制造和表征方面的互补专业知识将被利用,这些应用涵盖用于能量收集的低频振动到 MHz 范围内的医疗超声应用结果。该项目将制定新的分析和数值模型,并将开发一个新的实验框架,用于设计下一代机电传感器,以不同的方式利用非线性和谐振,这可能导致迄今为止主要依赖于电容的线性、无源特性的换能范式转变该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Variational Optimization on Lie Groups, with Examples of Leading (Generalized) Eigenvalue Problems
  • DOI:
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Molei Tao;T. Ohsawa
  • 通讯作者:
    Molei Tao;T. Ohsawa
Stochasticity of Deterministic Gradient Descent: Large Learning Rate for Multiscale Objective Function
  • DOI:
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lingkai Kong;Molei Tao
  • 通讯作者:
    Lingkai Kong;Molei Tao
Multiple electrically tunable parametric resonances in a capacitively coupled electromechanical resonator for broadband energy harvesting
  • DOI:
    10.1088/1361-665x/abea02
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    S. Surappa;T. Erdogan;F. Degertekin
  • 通讯作者:
    S. Surappa;T. Erdogan;F. Degertekin
Characterization of a parametric resonance based capacitive ultrasonic transducer in air for acoustic power transfer and sensing
  • DOI:
    10.1016/j.sna.2020.111863
  • 发表时间:
    2020-03-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Surappa, Sushruta;Degertekin, F. Levent
  • 通讯作者:
    Degertekin, F. Levent
Passive Vibration Control and Tunable Damping of MEMS Resonators via Electrical Autoparametric Resonance
通过电自参数谐振实现 MEMS 谐振器的被动振动控制和可调阻尼
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Levent Degertekin其他文献

Controlled two-step solid-phase crystallization for high-performance polysilicon TFT's
用于高性能多晶硅 TFT 的受控两步固相结晶
  • DOI:
    10.1109/55.605445
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Vivek Subramanian;P. Dankoski;Levent Degertekin;B. Khuri;K. C. Saraswat
  • 通讯作者:
    K. C. Saraswat

Levent Degertekin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Levent Degertekin', 18)}}的其他基金

I-Corps: Acousto-optical RF Field Sensor for Magnetic Resonance Imaging
I-Corps:用于磁共振成像的声光射频场传感器
  • 批准号:
    1914574
  • 财政年份:
    2019
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Standard Grant
EAGER: Acoustic Wave Driven Parametric Electrical Resonators
EAGER:声波驱动参数电谐振器
  • 批准号:
    1829821
  • 财政年份:
    2018
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Standard Grant
I-Corps: Single Chip Intravascular and Intracardiac Ultrasound Imaging Systems
I-Corps:单芯片血管内和心内超声成像系统
  • 批准号:
    1517521
  • 财政年份:
    2015
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Standard Grant
NOISE-BASED HIGH RESOLUTION ULTRASOUND IMAGING USING MICROENGINEERED SURFACES AND TRANSDUCERS
使用微工程表面和换能器进行基于噪声的高分辨率超声成像
  • 批准号:
    1202118
  • 财政年份:
    2012
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Continuing Grant
Advanced atomic force microscopy using the FIRAT probe
使用 FIRAT 探针的先进原子力显微镜
  • 批准号:
    0725618
  • 财政年份:
    2007
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Standard Grant
CAREER: Quantitative Ultrasonic Atomic Force Microscopy of Thin Films and Subsurface Interfaces
职业:薄膜和地下界面的定量超声原子力显微镜
  • 批准号:
    0348582
  • 财政年份:
    2004
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Standard Grant
U.S.-Turkey Cooperative Research: Optical Metrology of MEMS
美国-土耳其合作研究:MEMS光学计量
  • 批准号:
    0423403
  • 财政年份:
    2004
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Standard Grant
NER: Acoustic Radiation Pressure Driven Atomic Force Microscope for Fast Imaging and Parallel Sensing of Biological and Chemical Processes at the Nanoscale
NER:声辐射压力驱动原子力显微镜,用于纳米级生物和化学过程的快速成像和并行传感
  • 批准号:
    0210415
  • 财政年份:
    2002
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Standard Grant
In-Line Optical Measurement of MicroElectroMechanical Systems (MEMS) Devices During Production
生产过程中微机电系统 (MEMS) 器件的在线光学测量
  • 批准号:
    0200331
  • 财政年份:
    2002
  • 资助金额:
    $ 34.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

力学驱动的三维柔性纳机电谐振器设计和组装研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于二维材料的毫米波纳机电谐振器关键技术研究
  • 批准号:
    U21A20459
  • 批准年份:
    2021
  • 资助金额:
    265 万元
  • 项目类别:
氧化铪多态忆阻器对二维纳机电谐振器的调控机理研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G通信的铌酸锂单晶薄膜微机电谐振器的关键技术研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
用于太阳翼驱动机构的超声电机非线性动力学分析与自谐振控制方法
  • 批准号:
    51905265
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Noninvasive arrhythmia mapping using Electromechanical Wave Imaging
使用机电波成像进行无创心律失常绘图
  • 批准号:
    8456984
  • 财政年份:
    2012
  • 资助金额:
    $ 34.99万
  • 项目类别:
Noninvasive arrhythmia mapping using Electromechanical Wave Imaging
使用机电波成像进行无创心律失常绘图
  • 批准号:
    9000738
  • 财政年份:
    2012
  • 资助金额:
    $ 34.99万
  • 项目类别:
Noninvasive arrhythmia mapping using Electromechanical Wave Imaging
使用机电波成像进行无创心律失常绘图
  • 批准号:
    8320710
  • 财政年份:
    2012
  • 资助金额:
    $ 34.99万
  • 项目类别:
Noninvasive arrhythmia mapping using Electromechanical Wave Imaging
使用机电波成像进行无创心律失常绘图
  • 批准号:
    8607591
  • 财政年份:
    2012
  • 资助金额:
    $ 34.99万
  • 项目类别:
OPTIMIZING ELECTROMECHANICAL RESYNCHRONIZATION (CRT)
优化机电再同步 (CRT)
  • 批准号:
    6951262
  • 财政年份:
    2004
  • 资助金额:
    $ 34.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了