Reconfigurable free-form metamaterials: a new design paradigm for integrated optoelectronics based on 2D materials

可重构自由形态超材料:基于二维材料的集成光电子学新设计范式

基本信息

  • 批准号:
    1936729
  • 负责人:
  • 金额:
    $ 37.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-15 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Nontechnical:Silicon photonics is a rapidly growing industry, potentially reaching an annual value of over a billion dollars in the coming decade. In parallel, the complexity of photonic integrated circuits has increased by more than an order of magnitude. The optical response of silicon at wavelengths used for telecommunications, however, is relatively weak. Current optoelectronic technologies therefore rely on integrating other materials with the desired properties. In this context, graphene has emerged as an excellent candidate to realize silicon-compatible optoelectronic devices. Graphene is an atom-thick, two-dimensional material made from carbon. It is nearly 100 times stronger than steel, conducts heat and electricity efficiently, and has unusual optical properties. Recent experimental reports have already approached the predicted performance limits of graphene-based devices. It is not obvious how the device performance can be further enhanced while simultaneously reducing device size. Thus, new paradigms in graphene-based optoelectronic devices are required. This project will develop a new approach for realizing integrated optoelectronic devices. Nanofabrication will be used to integrate graphene into active devices and engineer the effective optical properties with nm scale resolution. These devices will be fully compatible with CMOS technology and promise dramatic reductions in device footprint and losses, while providing fast-speed with low energy consumption. The project brings together a multidisciplinary team of researchers from the United States, Northern Ireland, and the Republic of Ireland through the NSF-US/Ireland R&D Partnership. International cooperation will provide exceptional opportunities for international student exchange and research collaboration as part of this project.Technical:The proposed work aims to develop a new family of graphene-based CMOS-compatible optoelectronics. The two premises behind the proposed approach are that: (i) via nanofabrication, it is possible to spatially engineer the local refractive index of the device at deep sub-wavelength dimensions; and, (ii) by integrating two-dimensional material layers, it is possible to provide active functionality in a reduced area. The operation of these devices relies on the coupling between a number of resonant nano-photonic modes, which does not only make them robust to fabrication errors but also enables broad optical bandwidth in a reduced footprint. Three main research thrusts are identified: (a) development of high-performance ultra-compact graphene electro-optic modulators. (b) Extension of the proposed design concept to other optoelectronic devices beyond modulators (e.g., phase shifters, active couplers, polarizers, and sensors). (c) Monolithically integrate multiple devices on an optical chip and drive with proper CMOS circuitry. The proposed research is highly transformative since it combines two emerging research concepts so to overcome the main limitations of current integrated optoelectronic technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性:硅光子学是一个快速发展的行业,未来十年年产值可能超过十亿美元。与此同时,光子集成电路的复杂性增加了一个数量级以上。然而,硅在用于电信的波长下的光学响应相对较弱。因此,当前的光电技术依赖于集成具有所需特性的其他材料。在这种背景下,石墨烯已成为实现硅兼容光电器件的绝佳候选者。石墨烯是一种由碳制成的原子厚的二维材料。它的强度比钢高近 100 倍,能够高效导热和导电,并且具有不寻常的光学特性。最近的实验报告已经接近基于石墨烯的设备的预测性能极限。如何在减小器件尺寸的同时进一步增强器件性能尚不明显。因此,需要基于石墨烯的光电器件的新范例。该项目将开发一种实现集成光电器件的新方法。纳米加工将用于将石墨烯集成到有源器件中,并以纳米级分辨率设计有效的光学特性。这些器件将与 CMOS 技术完全兼容,并有望大幅减少器件占用空间和损耗,同时提供快速和低能耗。该项目通过 NSF-美国/爱尔兰研发合作伙伴关系汇集了来自美国、北爱尔兰和爱尔兰共和国的多学科研究人员团队。作为该项目的一部分,国际合作将为国际学生交流和研究合作提供绝佳的机会。技术:拟议的工作旨在开发基于石墨烯的 CMOS 兼容光电器件的新系列。该方法背后的两个前提是:(i)通过纳米加工,可以在深亚波长维度上空间设计器件的局部折射率; (ii)通过集成二维材料层,可以在较小的面积内提供活性功能。这些器件的运行依赖于多个谐振纳米光子模式之间的耦合,这不仅使它们能够抵抗制造误差,而且还可以在更小的占地面积中实现更宽的光学带宽。确定了三个主要研究方向:(a)开发高性能超紧凑石墨烯电光调制器。 (b) 将所提出的设计概念扩展到调制器之外的其他光电器件(例如移相器、有源耦合器、偏振器和传感器)。 (c) 将多个器件单片集成在一个光学芯片上,并用适当的 CMOS 电路进行驱动。拟议的研究具有高度变革性,因为它结合了两种新兴的研究概念,从而克服了当前集成光电技术的主要局限性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design and fabrication of a terahertz dual-plane hologram and extended-depth-of-focus diffractive lens
太赫兹双平面全息图和扩展景深衍射透镜的设计与制造
  • DOI:
    10.1364/optcon.466008
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jia, Wei;Lou, Minhan;Gao, Weilu;Sensale-Rodriguez, Berardi
  • 通讯作者:
    Sensale-Rodriguez, Berardi
Ultra-compact integrated photonic devices enabled by machine learning and digital metamaterials
由机器学习和数字超材料实现的超紧凑集成光子器件
  • DOI:
    10.1364/osac.417729
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Banerji, Sourangsu;Majumder, Apratim;Hamrick, Alex;Menon, Rajesh;Sensale-Rodriguez, Berardi
  • 通讯作者:
    Sensale-Rodriguez, Berardi
Broadband lightweight flat lenses for long-wave infrared imaging
Ammonia optical gas sensing based on graphene-covered silicon microring resonators: A design space exploration
  • DOI:
    10.1016/j.mejo.2021.105041
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Jia;Apratim Majumder;Sourangsu Banerji;R. Menon;B. S. Rodriguez
  • 通讯作者:
    W. Jia;Apratim Majumder;Sourangsu Banerji;R. Menon;B. S. Rodriguez
Imaging from the visible to the longwave infrared wavelengths via an inverse-designed flat lens
  • DOI:
    10.1364/oe.423764
  • 发表时间:
    2021-06-21
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Meem, Monjurul;Majumder, Apratim;Menon, Rajesh
  • 通讯作者:
    Menon, Rajesh
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Berardi Sensale-Rodriguez其他文献

Berardi Sensale-Rodriguez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Berardi Sensale-Rodriguez', 18)}}的其他基金

PFI-TT: Development of Novel Lens Technology for Next Generation Laser Manufacturing
PFI-TT:开发用于下一代激光制造的新型透镜技术
  • 批准号:
    2234413
  • 财政年份:
    2023
  • 资助金额:
    $ 37.98万
  • 项目类别:
    Standard Grant
Hybrid Organic-Inorganic Lead-Halide Perovskite-Based Active Terahertz Devices
混合有机-无机卤化铅钙钛矿基有源太赫兹器件
  • 批准号:
    1810096
  • 财政年份:
    2018
  • 资助金额:
    $ 37.98万
  • 项目类别:
    Standard Grant
Closing the terahertz gap with a new-family of terahertz devices based on two-dimensional materials
利用基于二维材料的新系列太赫兹器件缩小太赫兹差距
  • 批准号:
    1407959
  • 财政年份:
    2014
  • 资助金额:
    $ 37.98万
  • 项目类别:
    Standard Grant
CAREER: THz active metamaterials employing thin-film semiconductors
职业:采用薄膜半导体的太赫兹活性超材料
  • 批准号:
    1351389
  • 财政年份:
    2014
  • 资助金额:
    $ 37.98万
  • 项目类别:
    Standard Grant

相似国自然基金

光驱动自由基酶的催化机理研究和理性设计
  • 批准号:
    22337006
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
过约束对少自由度并联机构力学性能的影响机理及评价指标研究
  • 批准号:
    52365004
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于Fe-N-BC/PMS体系的自由基与非自由基协同降解地下水中磺胺类抗生素的机制研究
  • 批准号:
    42377036
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
大环超分子对有机污染物及其降解中间体的自由基激发与诱导机制
  • 批准号:
    52370168
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
可见光条件下EDA复合物引发硫酚自由基参与的硅烷化反应
  • 批准号:
    22361044
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Preclinical testing of early life anti-myostatin therapy for osteogenesis imperfecta
早期抗肌生长抑制素治疗成骨不全症的临床前测试
  • 批准号:
    10840238
  • 财政年份:
    2023
  • 资助金额:
    $ 37.98万
  • 项目类别:
Aerosolized Epigenetic Therapy for Metastatic Lung Cancer
雾化表观遗传疗法治疗转移性肺癌
  • 批准号:
    10760630
  • 财政年份:
    2023
  • 资助金额:
    $ 37.98万
  • 项目类别:
Creatine supplementation and resistance training to preserve muscle mass and attenuate cancer progression: A double-blind randomized controlled trial
肌酸补充剂和阻力训练可保持肌肉质量并减缓癌症进展:一项双盲随机对照试验
  • 批准号:
    10712432
  • 财政年份:
    2023
  • 资助金额:
    $ 37.98万
  • 项目类别:
Clinic-Ready MACH-1 Gene Gun for delivery of a universal influenza DNA vaccine
临床就绪的 MACH-1 基因枪,用于提供通用流感 DNA 疫苗
  • 批准号:
    10761364
  • 财政年份:
    2023
  • 资助金额:
    $ 37.98万
  • 项目类别:
Diversity Supplement: Dose-response of aerobic training during total neoadjuvant therapy for locally advanced rectal cancer
多样性补充:局部晚期直肠癌全新辅助治疗期间有氧训练的剂量反应
  • 批准号:
    10817969
  • 财政年份:
    2023
  • 资助金额:
    $ 37.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了