Mechanics of Bioderived-Cellulose-Based Ultra-Strong and Ultra-Tough Materials
生物纤维素基超强超韧材料的力学
基本信息
- 批准号:1936452
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research program will focus on exploring design strategies to achieve ultra-strong and ultra-tough materials based on bioderived cellulose. Cellulose is the most abundant biopolymer on Earth and has long been used to produce paper products. Cellulose has remarkable mechanical properties, making it as a promising building block for high performance functional and structural materials. While plants are the common source of cellulose, it requires extra physical and chemical processing to isolate and purify cellulose from plants, and such processing can potentially decrease the mechanical performance of plant cellulose. Moreover, trees often take years or decades to mature, posing substantial time cost to plant cellulose. Bioderived Cellulose produced through a microscopic organism enabled fermentation process is chemically 100% pure with much better properties than plant cellulose and can be obtained at industrial scale at a low cost within days. This research program aims to use both experimental and computational studies to investigate the fundamental science that governs the superb mechanical properties of bioderived cellulose. The success of this research program can potentially lead to a low-cost and long-sought solution in designing high performance engineering materials. The research will also be complemented by establishing a well-rounded educational and outreach program including research opportunities for graduate and undergraduate students, internship for underrepresented minority high school students, public outreach at the annual Maryland Day, and research dissemination via cyberinfrastructure. The specific goal of this research program is (a) to explore a promising but largely unexplored strategy to enhance the mechanical properties of bioderived cellulose materials via ion infiltration, and (b) to decipher the fundamental correlation of the superb mechanical properties of bioderived cellulose materials with cellulose fiber length/alignment and water content. The research will be conducted via a coherent research framework integrating experiments and multiscale modeling. By revealing the fundamental science of the superb intrinsic mechanical properties of cellulose, the project holds promise to drive a paradigm shift in the usage of cellulose beyond its conventional way. The new knowledge generated from this research program will shed light fertile opportunities to exploit the full potential of the intrinsic superb mechanical properties of cellulose, the most abundant biopolymer on Earth. The fundamental scientific understanding emerging from this study can enrich the disciplines of mechanics of materials with multiple tantalizing research frontiers and be readily adapted and generalized to other material systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究计划将着重于探索设计策略,以实现基于生物层次的纤维素的超强和超阻-Tough材料。纤维素是地球上最丰富的生物聚合物,长期以来一直用于生产纸张产品。纤维素具有显着的机械性能,使其成为高性能功能和结构材料的有前途的基础。虽然植物是纤维素的常见来源,但它需要额外的物理和化学加工来分离和纯化纤维素,从而可以潜在地降低植物纤维素的机械性能。此外,树木通常需要数年或数十年才能成熟,构成了植物纤维素的大量时间。通过微观生物体生产的生物纤维素在化学上是100%纯的,其性能比植物纤维素更好,并且可以在工业尺度上以低成本在几天内以低成本获得。该研究计划旨在同时使用实验和计算研究来研究控制生物培养纤维素的精湛机械性能的基本科学。该研究计划的成功可能会导致设计高性能工程材料的低成本和长期解决方案。这项研究还将通过建立全面的教育和推广计划来补充,包括研究生和本科生的研究机会,针对人数不足的少数民族高中生实习,在马里兰州年度的公共宣传以及通过Cyberinfrastruct的研究传播。该研究计划的具体目标是(a)探索一种有希望但未开发的策略,以通过离子浸润来增强生物培养的纤维素材料的机械性能,以及(b)破译与纤维素光纤长度/对准纤维纤维长度/对准纤维纤维纤维纤维材料的超级机械性能的基本相关性。该研究将通过集成实验和多尺度建模的连贯研究框架进行。通过揭示纤维素出色的内在机械性能的基本科学,该项目有望推动纤维素使用范式的范式转移,超出其传统方式。该研究计划产生的新知识将摆脱肥沃的机会,以利用纤维素的内在出色机械性能的全部潜力,纤维素是地球上最丰富的生物聚合物。这项研究中提出的基本科学理解可以丰富具有多种诱人研究边界的材料力学学科,并很容易对其他材料系统进行调整和概括。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估来通过评估来支持的,审查了审查标准。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
EML Webinar Overview: Advanced materials toward a sustainable future—Mechanics design
- DOI:10.1016/j.eml.2020.101107
- 发表时间:2021
- 期刊:
- 影响因子:4.7
- 作者:Teng Li
- 通讯作者:Teng Li
Recent Advances in Functional Materials through Cellulose Nanofiber Templating
- DOI:10.1002/adma.202005538
- 发表时间:2021-02-09
- 期刊:
- 影响因子:29.4
- 作者:Lamm, Meghan E.;Li, Kai;Ozcan, Soydan
- 通讯作者:Ozcan, Soydan
Alignment of Cellulose Nanofibers: Harnessing Nanoscale Properties to Macroscale Benefits
- DOI:10.1021/acsnano.0c07613
- 发表时间:2021-02-18
- 期刊:
- 影响因子:17.1
- 作者:Li, Kai;Clarkson, Caitlyn M.;Ozcan, Soydan
- 通讯作者:Ozcan, Soydan
Flaw sensitivity of cellulose paper
- DOI:10.1016/j.eml.2022.101865
- 发表时间:2022-08
- 期刊:
- 影响因子:4.7
- 作者:Qiongyu Chen;Bo Chen;Shuangshuang Jing;Yu Liu;Teng Li
- 通讯作者:Qiongyu Chen;Bo Chen;Shuangshuang Jing;Yu Liu;Teng Li
Mechanics of cellulose nanopaper using a scalable coarse-grained modeling scheme
- DOI:10.1007/s10570-021-03740-x
- 发表时间:2021-03-02
- 期刊:
- 影响因子:5.7
- 作者:Ray, Upamanyu;Pang, Zhenqian;Li, Teng
- 通讯作者:Li, Teng
共 7 条
- 1
- 2
Teng Li其他文献
Geometrical Design and Hydraulic Feasibility of Inner-Reinforced Girders in Hydropower Bifurcations
水电分叉处内筋梁的几何设计及水力可行性
- DOI:10.1007/s12209-017-0063-010.1007/s12209-017-0063-0
- 发表时间:2017-062017-06
- 期刊:
- 影响因子:0
- 作者:Zhimin Zhang;Hegao Wu;Yang Wang;Qiling Zhang;Teng LiZhimin Zhang;Hegao Wu;Yang Wang;Qiling Zhang;Teng Li
- 通讯作者:Teng LiTeng Li
A new surgical treatment for post-tubercular thoracic kyphosis, a retrospective study.
结核后胸椎后凸的新手术治疗方法,回顾性研究。
- DOI:10.21203/rs.3.rs-27910/v110.21203/rs.3.rs-27910/v1
- 发表时间:20202020
- 期刊:
- 影响因子:0
- 作者:Wenhao Hu;Hua;F. Hu;Qi Wang;Teng Li;Yan Wang;Xuesong ZhangWenhao Hu;Hua;F. Hu;Qi Wang;Teng Li;Yan Wang;Xuesong Zhang
- 通讯作者:Xuesong ZhangXuesong Zhang
Long-term versus short-term introvesical chemotherapy in patients with non-muscle-invasive bladder cancer: A systematic review and meta-analysis of the published results of randomized clinical trials
非肌层浸润性膀胱癌患者的长期膀胱内化疗与短期膀胱内化疗:对已发表的随机临床试验结果的系统回顾和荟萃分析
- DOI:10.1007/s11596-014-1340-y10.1007/s11596-014-1340-y
- 发表时间:20142014
- 期刊:
- 影响因子:0
- 作者:Teng Li;Yi Xing;Shu;Xiao;Wen;Min ChenTeng Li;Yi Xing;Shu;Xiao;Wen;Min Chen
- 通讯作者:Min ChenMin Chen
Observable Euler Equations for Inviscid Regularized Two Phase Flow Simulation
无粘正则两相流模拟的可观测欧拉方程
- DOI:10.2514/6.2015-005110.2514/6.2015-0051
- 发表时间:20152015
- 期刊:
- 影响因子:0
- 作者:Teng Li;Doug Lipinski;K. MohseniTeng Li;Doug Lipinski;K. Mohseni
- 通讯作者:K. MohseniK. Mohseni
Acoustic streaming effects on collagen self-assembly
声流对胶原自组装的影响
- DOI:
- 发表时间:20242024
- 期刊:
- 影响因子:0
- 作者:Yingshan Du;Zhe Pei;Liang Shen;Jiali Li;Bowen Cai;Teng Li;Luyu Bo;Zhenhua TianYingshan Du;Zhe Pei;Liang Shen;Jiali Li;Bowen Cai;Teng Li;Luyu Bo;Zhenhua Tian
- 通讯作者:Zhenhua TianZhenhua Tian
共 199 条
- 1
- 2
- 3
- 4
- 5
- 6
- 40
Teng Li的其他基金
I-Corps: Sustainable Atmospheric Water Harvesting
I-Corps:可持续的大气集水
- 批准号:23300132330013
- 财政年份:2023
- 资助金额:$ 45万$ 45万
- 项目类别:Standard GrantStandard Grant
NSF Convergence Accelerator: Re-Think Nature for Innovative Solutions to Grand Challenges
NSF 融合加速器:重新思考自然,寻找应对重大挑战的创新解决方案
- 批准号:20353072035307
- 财政年份:2020
- 资助金额:$ 45万$ 45万
- 项目类别:Standard GrantStandard Grant
The Science Underpinning Anomalous Scaling Laws of Strength and Toughness in Nanocellulose Materials
支持纳米纤维素材料强度和韧性异常缩放定律的科学
- 批准号:13622561362256
- 财政年份:2014
- 资助金额:$ 45万$ 45万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Measurements and Implications of Graphene Adhesion - A Coherent Study via Experiments and Modeling
合作研究:石墨烯粘附力的测量和影响 - 通过实验和建模进行的连贯研究
- 批准号:11298261129826
- 财政年份:2011
- 资助金额:$ 45万$ 45万
- 项目类别:Standard GrantStandard Grant
Graphene-based Ultrasensitive Nanostructures
基于石墨烯的超灵敏纳米结构
- 批准号:10690761069076
- 财政年份:2011
- 资助金额:$ 45万$ 45万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Deciphering the Reliability of Nano Ceramic Films on Polymer Substrates: A Mechanistic Study
合作研究:破译聚合物基底上纳米陶瓷薄膜的可靠性:机理研究
- 批准号:09282780928278
- 财政年份:2009
- 资助金额:$ 45万$ 45万
- 项目类别:Standard GrantStandard Grant
GOALI: Mechanics of Permeation Barriers in Flexible Electronics
GOALI:柔性电子产品渗透屏障的力学
- 批准号:08565400856540
- 财政年份:2009
- 资助金额:$ 45万$ 45万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
“微生物-肠-脑轴”调节抑郁症睡眠障碍的机制及其作为rTMS治疗效果预测的生物标志物研究
- 批准号:82371928
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肠道微生物介导乳寡糖调节仔猪肠道免疫稳态的机制研究
- 批准号:32372897
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
褐化白色脂肪/活化棕色脂肪—双路径调节热输出的辛热药表征温里效应生物学基础研究
- 批准号:82374057
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
生物钟基因Rev-erbα调节星形胶质细胞氧化还原稳态在多巴胺能神经元损伤中的机制研究
- 批准号:32300799
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物互作网络调节森林群落对全球变化的响应与适应
- 批准号:32330064
- 批准年份:2023
- 资助金额:219 万元
- 项目类别:重点项目
相似海外基金
Synthesis of Bioderived and Degradable Semiconducting Polymers for Electronic Devices
用于电子设备的生物源可降解半导体聚合物的合成
- 批准号:569206-2022569206-2022
- 财政年份:2022
- 资助金额:$ 45万$ 45万
- 项目类别:Alexander Graham Bell Canada Graduate Scholarships - DoctoralAlexander Graham Bell Canada Graduate Scholarships - Doctoral
High performance bioderived hybrid fillers for rubber composite
用于橡胶复合材料的高性能生物衍生杂化填料
- 批准号:LP200200965LP200200965
- 财政年份:2021
- 资助金额:$ 45万$ 45万
- 项目类别:Linkage ProjectsLinkage Projects
Novel bioderived and biodegradable wood plastic composites from wastes
来自废物的新型生物衍生和可生物降解木塑复合材料
- 批准号:LP140100596LP140100596
- 财政年份:2014
- 资助金额:$ 45万$ 45万
- 项目类别:Linkage ProjectsLinkage Projects
Sustainable dollar notes and other polypropylenes from bioderived feedstocks
可持续美元纸币和其他来自生物原料的聚丙烯
- 批准号:LP120100517LP120100517
- 财政年份:2012
- 资助金额:$ 45万$ 45万
- 项目类别:Linkage ProjectsLinkage Projects
Utilising nature's complexity - understanding fundamental organometallic binding modes of furans and coordination of bioderived furans
利用大自然的复杂性 - 了解呋喃的基本有机金属结合模式和生物源呋喃的配位
- 批准号:DP1094221DP1094221
- 财政年份:2010
- 资助金额:$ 45万$ 45万
- 项目类别:Discovery ProjectsDiscovery Projects