Wafer-Scale Manufacturing of Two-Dimensional Anisotropic Nanomaterials by Chemical Vapor Deposition

化学气相沉积法晶圆级制造二维各向异性纳米材料

基本信息

  • 批准号:
    1933214
  • 负责人:
  • 金额:
    $ 30.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2022-11-30
  • 项目状态:
    已结题

项目摘要

Anisotropic nanomaterials are materials that form with molecular order in a two-dimensional (2D) atomically-thin topography. Recent discoveries have shown that these materials exhibit extraordinary physical and chemical properties, such as high electron mobility, high temperature superconductivity, and thermally stable polarized excitons. They have the potential to dramatically impact technological advances, which can affect many industrial sectors, from national defense (sensors and detectors) to energy conversion (solar cells and hydrogen generation), and communication (high speed electronics). But manufacturing atomically-thin nanomaterials reproducibly and economically is difficult. Current manufacturing techniques do not allow for synthesis with atomic precision and tend to fabricate materials that are highly disordered. This award supports fundamental research to develop a robust manufacturing process to meet this challenge and unleash the promised power of anisotropic nanomaterials. These materials are grown on solid templates by chemical vapor deposition (CVD). If successfully manufactured, these materials can function as building-blocks in complex device architectures for a variety of applications, thus translating fundamental scientific discoveries into useful products. Additionally, knowledge generated by this project can be extended to the manufacturing of many ultra-thin coatings. This project greatly enhances the teaching and education of the next generation of engineers and scientists. In an active research environment, high school, undergraduate and graduate students are trained, with a significant effort given to involving women and underrepresented minority groups. This project establishes the thermodynamics and kinetics of the nucleation and growth of two-dimensional (2D) anisotropic nanomaterials, such as ReS2, GaTe, ZrTe3, and NbS3. The method involves designing the surface morphology and chemistry of solid templates so that the 2D anisotropic nanomaterials grown on them are defect free and have highly oriented chains required for practical applications. The project investigates the role played by the substrate, surface chemistry, and vacancy defects in large-scale manufacturing. The approach is to use precursors in vapor form and react them at low temperatures, making it low-cost and easy to scale. It identifies a set of conditions, such as surface characteristics, required to achieve high crystallinity and full coverage growth across wafers up to 4 inches. Wafer scale characterization tests help to correlate growth parameters to thickness, stoichiometry, and anisotropy uniformity across the wafer, and guide the growth parameterization efforts. Unlike commonly used powder evaporation CVD for laboratory-scale 2D nanomaterial fabrication, this project utilizes a gas-CVD technique involving CVD showerheads. This allows the independent control of precursor concentrations, minute control over nucleation density, flow rates, gas streamlines, and temperature profiles which is ideal for industrial-scale manufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
各向异性纳米材料是在二维 (2D) 原子薄形貌中以分子顺序形成的材料。最近的发现表明,这些材料表现出非凡的物理和化学性质,例如高电子迁移率、高温超导性和热稳定的极化激子。它们有可能极大地影响技术进步,从而影响许多工业部门,从国防(传感器和探测器)到能源转换(太阳能电池和制氢)和通信(高速电子产品)。但以可重复且经济的方式制造原子薄的纳米材料是很困难的。当前的制造技术不允许以原子精度进行合成,并且倾向于制造高度无序的材料。该奖项支持基础研究,以开发稳健的制造工艺来应对这一挑战,并释放各向异性纳米材料所承诺的力量。这些材料通过化学气相沉积 (CVD) 在固体模板上生长。如果成功制造,这些材料可以作为各种应用的复杂设备架构的构建模块,从而将基础科学发现转化为有用的产品。此外,该项目产生的知识可以扩展到许多超薄涂层的制造。该项目极大地增强了下一代工程师和科学家的教学和教育。在活跃的研究环境中,高中生、本科生和研究生都接受培训,并大力吸引女性和代表性不足的少数群体的参与。该项目建立了二维 (2D) 各向异性纳米材料(例如 ReS2、GaTe、ZrTe3 和 NbS3)的成核和生长的热力学和动力学。该方法涉及设计固体模板的表面形态和化学性质,以便在其上生长的二维各向异性纳米材料没有缺陷,并具有实际应用所需的高度定向的链。该项目研究了基材、表面化学和空位缺陷在大规模制造中所发挥的作用。该方法是使用蒸气形式的前体并在低温下进行反应,使其成本低廉且易于规模化。它确定了在高达 4 英寸的晶圆上实现高结晶度和全覆盖生长所需的一系列条件,例如表面特性。晶圆尺度表征测试有助于将生长参数与整个晶圆的厚度、化学计量和各向异性均匀性相关联,并指导生长参数化工作。与实验室规模的二维纳米材料制造常用的粉末蒸发 CVD 不同,该项目采用涉及 CVD 喷头的气体 CVD 技术。这允许独立控制前体浓度,对成核密度、流速、气体流线和温度分布进行精细控制,这对于工业规模制造来说是理想的。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(51)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The phononic and charge density wave behavior of entire rare-earth tritelluride series with chemical pressure and temperature
  • DOI:
    10.1063/5.0110395
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    K. Yumigeta;Y. Attarde;J. Kopaczek;M. Sayyad;Yuxia Shen;Mark Blei;Seyed Tohid Rajaei Moosavy;Ying Qin;R. Sailus;S. Tongay
  • 通讯作者:
    K. Yumigeta;Y. Attarde;J. Kopaczek;M. Sayyad;Yuxia Shen;Mark Blei;Seyed Tohid Rajaei Moosavy;Ying Qin;R. Sailus;S. Tongay
Excitons in Bilayer MoS2 Displaying a Colossal Electric Field Splitting and Tunable Magnetic Response
  • DOI:
    10.1103/physrevlett.126.037401
  • 发表时间:
    2021-01-20
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Lorchat, Etienne;Selig, Malte;Hoefling, Sven
  • 通讯作者:
    Hoefling, Sven
Intrinsic circularly polarized exciton emission in a twisted van der Waals heterostructure
  • DOI:
    10.1103/physrevb.105.l241406
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    J. Michl;C. Palekar;S. A. Tarasenko;F. Lohof;C. Gies;M. von Helversen;R. Sailus;S. Tongay;T. Taniguchi;K. Watanabe;T. Heindel;B. Rosa;M. Rödel;T. Shubina;S. Höfling;S. Reitzenstein;C. Anton-Solanas;C. Schneider
  • 通讯作者:
    J. Michl;C. Palekar;S. A. Tarasenko;F. Lohof;C. Gies;M. von Helversen;R. Sailus;S. Tongay;T. Taniguchi;K. Watanabe;T. Heindel;B. Rosa;M. Rödel;T. Shubina;S. Höfling;S. Reitzenstein;C. Anton-Solanas;C. Schneider
Pressure-induced suppression of charge density phases across the entire rare-earth tritellurides by optical spectroscopy
  • DOI:
    10.1039/d2tc02137d
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    J. Kopaczek;Han Li;K. Yumigeta;R. Sailus;M. Sayyad;Seyed Tohid Rajaei Moosavy;R. Kudrawiec;S. Tongay
  • 通讯作者:
    J. Kopaczek;Han Li;K. Yumigeta;R. Sailus;M. Sayyad;Seyed Tohid Rajaei Moosavy;R. Kudrawiec;S. Tongay
Mapping the dispersion of the occupied and unoccupied band structure in photoexcited 1T-TiSe2
  • DOI:
    10.1016/j.jpcs.2022.110740
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Maximilian Huber;Y. Lin;N. Dale;R. Sailus;S. Tongay;R. Kaindl;A. Lanzara
  • 通讯作者:
    Maximilian Huber;Y. Lin;N. Dale;R. Sailus;S. Tongay;R. Kaindl;A. Lanzara
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sefaattin Tongay其他文献

Stable p- and n- type doping of few-layer grapheme/graphite
少层石墨烯/石墨的稳定 p 型和 n 型掺杂
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Xiuqing Meng;Sefaattin Tongay;Jun Kang;Zhanghui Chen;Fengmin Wu;Shu-Shen Li;Jian-Bai Xia;Jingbo Li;Junqiao Wu
  • 通讯作者:
    Junqiao Wu

Sefaattin Tongay的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sefaattin Tongay', 18)}}的其他基金

Discovery and Control of Skyrmions in 2D van der Waals Magnets
二维范德华磁体中斯格明子的发现和控制
  • 批准号:
    2206987
  • 财政年份:
    2022
  • 资助金额:
    $ 30.26万
  • 项目类别:
    Continuing Grant
Spin-orbitronic devices based on 2D Rashba Janus crystals as active materials
基于二维 Rashba Janus 晶体作为活性材料的自旋轨道电子器件
  • 批准号:
    2052527
  • 财政年份:
    2021
  • 资助金额:
    $ 30.26万
  • 项目类别:
    Standard Grant
GOALI: Large Scale Synthesis and Manufacturing of Atomically Thin Polar Materials for Quantum Applications
GOALI:用于量子应用的原子薄极性材料的大规模合成和制造
  • 批准号:
    2129412
  • 财政年份:
    2021
  • 资助金额:
    $ 30.26万
  • 项目类别:
    Continuing Grant
Bosonic Condensation and Emergent Phenomena in 2D Janus layers and Moiré Lattices
二维 Janus 层和莫尔晶格中的玻色子凝聚和涌现现象
  • 批准号:
    2111812
  • 财政年份:
    2021
  • 资助金额:
    $ 30.26万
  • 项目类别:
    Standard Grant
Discovery and Fundamental Investigation of Emergent Phenomena in Novel 2D Magnets
新型二维磁体中涌现现象的发现和基础研究
  • 批准号:
    1904716
  • 财政年份:
    2019
  • 资助金额:
    $ 30.26万
  • 项目类别:
    Continuing Grant
EAGER: The Fundamentals of Exotic Exciton Complexes in 2D Janus Semiconductors
EAGER:二维 Janus 半导体中奇异激子复合物的基础知识
  • 批准号:
    1955889
  • 财政年份:
    2019
  • 资助金额:
    $ 30.26万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Room temperature Quantum Logic operations Enabled by Quantum Emitter Arrays in 2D artificial Superlattices
EAGER:实现量子飞跃:二维人造超晶格中的量子发射器阵列实现室温量子逻辑运算
  • 批准号:
    1838443
  • 财政年份:
    2018
  • 资助金额:
    $ 30.26万
  • 项目类别:
    Standard Grant
Manufacturing of Two-Dimensional Metal-Organic Framework Nanosheets by Two-Phase Solution Method
两相溶液法制备二维金属有机框架纳米片
  • 批准号:
    1825594
  • 财政年份:
    2018
  • 资助金额:
    $ 30.26万
  • 项目类别:
    Standard Grant
Nanomanufacturing of 3D Networks of 2D Materials for High Materials Performance
2D 材料 3D 网络纳米制造,实现高材料性能
  • 批准号:
    1561839
  • 财政年份:
    2016
  • 资助金额:
    $ 30.26万
  • 项目类别:
    Standard Grant
CAREER: Point Defects in Two-dimensional Material Systems: Fundamentals and New Perspectives
职业:二维材料系统中的点缺陷:基础知识和新视角
  • 批准号:
    1552220
  • 财政年份:
    2016
  • 资助金额:
    $ 30.26万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向网约平台的大规模农机协同调度优化研究
  • 批准号:
    72301036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
时空随机耦合下规模化分布式资源动态聚合与梯级协同调控方法研究
  • 批准号:
    52377095
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于黎曼流体空间的大规模知识图谱感知推荐关键技术研究
  • 批准号:
    62376135
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向大规模高维数据的高效相似性检索方法研究
  • 批准号:
    62302110
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于信息几何的超大规模MIMO传输理论方法研究
  • 批准号:
    62371125
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

Wafer-Scale Manufacturing of Single-Crystal Perovskite Optoelectronics
单晶钙钛矿光电器件的晶圆级制造
  • 批准号:
    EP/V050311/1
  • 财政年份:
    2021
  • 资助金额:
    $ 30.26万
  • 项目类别:
    Research Grant
Wafer-Scale Manufacturing of Ultrathin Nanoporous Transition Metal Dichalcogenide Membranes Using Chemical Etching for Water Purification and Other Applications
使用化学蚀刻进行水净化和其他应用的超薄纳米多孔过渡金属二硫属化物膜的晶圆级制造
  • 批准号:
    2002477
  • 财政年份:
    2020
  • 资助金额:
    $ 30.26万
  • 项目类别:
    Standard Grant
EAGER: Wafer-scale manufacturing of long-lived rare-earth qubits
EAGER:长寿命稀土量子位的晶圆级制造
  • 批准号:
    1843044
  • 财政年份:
    2018
  • 资助金额:
    $ 30.26万
  • 项目类别:
    Standard Grant
SBIR Phase II: High Performance Cooling Devices through Wafer Scale Manufacturing
SBIR 第二阶段:通过晶圆级制造实现高性能冷却设备
  • 批准号:
    0750189
  • 财政年份:
    2008
  • 资助金额:
    $ 30.26万
  • 项目类别:
    Standard Grant
SBIR Phase I: High Performance Cooling Devices through Wafer Scale Manufacturing
SBIR 第一阶段:通过晶圆级制造实现高性能冷却设备
  • 批准号:
    0637734
  • 财政年份:
    2007
  • 资助金额:
    $ 30.26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了