Collaborative Research: Multi-Scale, Multi-Rate Spatiotemporal Optimal Control with Application to Airborne Wind Energy Systems

合作研究:多尺度、多速率时空最优控制及其在机载风能系统中的应用

基本信息

  • 批准号:
    1913726
  • 负责人:
  • 金额:
    $ 18.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-16 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

The objective of this research is to pioneer new control strategies for emerging systems whose operating environments change as functions of both time and a controllable spatial position. Such applications include coordinated unmanned aerial vehicles that operate in variable atmospheric conditions, concepts for relocatable marine hydrokinetic energy systems that operate in a varying ocean environment, and airborne wind energy systems that operate in an atmospheric environment where the wind varies with respect to both time and vertical position. This research will focus on deriving general theory that will be relevant to a variety of applications, along with the validation of these results on an airborne wind energy system. In airborne wind energy systems, the conventional tower is replaced by tethers and a lifting body (a wing or aerostat) that elevates a horizontal-axis turbine to high altitudes. Because the tether lengths can be adjusted, the operating altitude can be varied to optimally harness the wind resource. The work will include a substantial complementary educational component, wherein graduate, undergraduate, and STEM high school students will utilize NREL's Hybrid Optimization Model for Multiple Energy Resources (HOMER) software to optimize renewable/storage/dispatchable network configurations for microgrids in North Carolina and California.This research will derive new control theoretic knowledge and tools for the systems that operate in a spatiotemporally varying and partially observable environment. While optimal control in a temporally varying environment is a well-studied problem that can be addressed through Markov models, the addition of a spatial component results in an explosion in the number of states, rendering Markov-based methods computationally infeasible in most cases. Furthermore, the presence of partial observability results in a fundamental tradeoff between exploration (obtaining knowledge of the spatial environment) and exploitation (operating at the most favorable locations). To address the complexities of this spatiotemporal optimization problem, this research will explore the use of a multi-rate, multi-scale hierarchical framework. Specifically, an upper-level controller will perform a global optimization over a very coarse grid (thereby rendering the optimization computationally tractable), and a lower-level optimization will perform adjustments on a much finer grid. The research will focus on model predictive control for the upper-level optimization and will explore the use of extremum seeking and model predictive control strategies at the lower level. Control algorithms will be validated on a model of a lighter-than-air airborne wind energy system, using real wind shear profile models and load demand data. In this airborne wind energy system, the wind speed is only measurable at the system?s operating altitude (thereby making the problem partially observable), and significant energy production improvements can be realized through the optimal adjustment of the operating altitude.uction improvements can be realized through the optimal adjustment of the operating altitude.
这项研究的目的是为新兴系统开创新的控制策略,这些系统的运行环境随着时间和可控空间位置的变化而变化。此类应用包括在可变大气条件下运行的协调无人机、在变化的海洋环境中运行的可重新定位海洋流体动力能源系统的概念,以及在风随时间和时间变化的大气环境中运行的机载风能系统。垂直位置。这项研究将侧重于推导与各种应用相关的一般理论,以及在机载风能系统上验证这些结果。在机载风能系统中,传统的塔被系绳和提升体(机翼或浮空器)取代,将水平轴涡轮机提升到高空。由于系绳长度可以调节,因此可以改变操作高度,以最佳地利用风力资源。这项工作将包括一个实质性的补充教育部分,其中研究生、本科生和 STEM 高中生将利用 NREL 的多能源混合优化模型 (HOMER) 软件来优化北卡罗来纳州和加利福尼亚州微电网的可再生/存储/可调度网络配置这项研究将为在时空变化和部分可观察的环境中运行的系统提供新的控制理论知识和工具。虽然时间变化环境中的最优控制是一个经过充分研究的问题,可以通过马尔可夫模型来解决,但空间分量的添加会导致状态数量的爆炸,使得基于马尔可夫的方法在大多数情况下在计算上不可行。此外,部分可观测性的存在导致探索(获取空间环境的知识)和开发(在最有利的位置进行操作)之间的基本权衡。为了解决这种时空优化问题的复杂性,本研究将探索使用多速率、多尺度分层框架。具体来说,上层控制器将在非常粗糙的网格上执行全局优化(从而使优化在计算上易于处理),而下层优化将在更精细的网格上执行调整。该研究将重点关注上层优化的模型预测控制,并将探索极值搜索和模型预测控制策略在下层的使用。将使用真实的风切变剖面模型和负载需求数据,在轻于空气的机载风能系统模型上验证控制算法。在该机载风能系统中,风速只能在系统的工作高度测量(从而使问题部分可观察),并且通过工作高度的优化调整可以实现显着的能源生产改进。吸力改进可以通过作业高度的优化调整来实现。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Serious Sailing: Time-Optimal Control of Sailing Drones in Stochastic, Spatiotemporally Varying Wind Fields
严肃的航行:随机时空变化风场中航行无人机的时间最优控制
  • DOI:
    10.23919/acc45564.2020.9147909
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shepherd, Blake;Haydon, Ben;Vermillion, Chris
  • 通讯作者:
    Vermillion, Chris
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Vermillion其他文献

Persistent Mission Planning of an Energy-Harvesting Autonomous Underwater Vehicle for Gulf Stream Characterization
用于湾流表征的能量采集自主水下航行器的持续任务规划
Eclares: Energy-Aware Clarity-Driven Ergodic Search
Eclares:能量感知、清晰度驱动的遍历搜索
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaleb Ben Naveed;Devansh R. Agrawal;Christopher Vermillion;Dimitra Panagou
  • 通讯作者:
    Dimitra Panagou
Experimental Validation of an Iterative Learning-Based Flight Trajectory Optimizer for an Underwater Kite
基于迭代学习的水下风筝飞行轨迹优化器的实验验证
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    James Reed;Kartik Naik;Andrew Abney;Dillon Herbert;Jacob Fine;Ashwin Vadlamannati;James Morris;Trip Taylor;Michael Muglia;Kenneth Granlund;M. Bryant;Christopher Vermillion
  • 通讯作者:
    Christopher Vermillion

Christopher Vermillion的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Vermillion', 18)}}的其他基金

Real-Time Control Co-Design for Reconfigurable Energy-Harvesting Systems
可重构能量收集系统的实时控制协同设计
  • 批准号:
    2321698
  • 财政年份:
    2023
  • 资助金额:
    $ 18.28万
  • 项目类别:
    Standard Grant
Persistent Mission Planning and Control for Renewably Powered Robotic Systems
可再生能源机器人系统的持续任务规划和控制
  • 批准号:
    2012103
  • 财政年份:
    2020
  • 资助金额:
    $ 18.28万
  • 项目类别:
    Standard Grant
Collaborative Research: Workshop: Integrated Design of Active Dynamic Systems (IDADS); Champaign, Illinois
合作研究:研讨会:主动动态系统集成设计(IDADS);
  • 批准号:
    1935879
  • 财政年份:
    2019
  • 资助金额:
    $ 18.28万
  • 项目类别:
    Standard Grant
CAREER: Efficient Experimental Optimization for High-Performance Airborne Wind Energy Systems
职业:高性能机载风能系统的高效实验优化
  • 批准号:
    1914495
  • 财政年份:
    2018
  • 资助金额:
    $ 18.28万
  • 项目类别:
    Standard Grant
Collaborative Research: An Economic Iterative Learning Control Framework with Application to Airborne Wind Energy Harvesting
合作研究:应用于机载风能采集的经济迭代学习控制框架
  • 批准号:
    1913735
  • 财政年份:
    2018
  • 资助金额:
    $ 18.28万
  • 项目类别:
    Standard Grant
Collaborative Research: An Economic Iterative Learning Control Framework with Application to Airborne Wind Energy Harvesting
合作研究:应用于机载风能采集的经济迭代学习控制框架
  • 批准号:
    1727779
  • 财政年份:
    2017
  • 资助金额:
    $ 18.28万
  • 项目类别:
    Standard Grant
Collaborative Research: Multi-Scale, Multi-Rate Spatiotemporal Optimal Control with Application to Airborne Wind Energy Systems
合作研究:多尺度、多速率时空最优控制及其在机载风能系统中的应用
  • 批准号:
    1711579
  • 财政年份:
    2017
  • 资助金额:
    $ 18.28万
  • 项目类别:
    Standard Grant
Collaborative Research: Self-Adjusting Periodic Optimal Control with Application to Energy-Harvesting Flight
合作研究:自调节周期性最优控制及其在能量收集飞行中的应用
  • 批准号:
    1538369
  • 财政年份:
    2015
  • 资助金额:
    $ 18.28万
  • 项目类别:
    Standard Grant
CAREER: Efficient Experimental Optimization for High-Performance Airborne Wind Energy Systems
职业:高性能机载风能系统的高效实验优化
  • 批准号:
    1453912
  • 财政年份:
    2015
  • 资助金额:
    $ 18.28万
  • 项目类别:
    Standard Grant
Altitude Control for Optimal Performance of Tethered Wind Energy Systems
用于系留风能系统最佳性能的高度控制
  • 批准号:
    1437296
  • 财政年份:
    2014
  • 资助金额:
    $ 18.28万
  • 项目类别:
    Standard Grant

相似国自然基金

密集阵列可见光通信系统多域协作的调制多址技术研究
  • 批准号:
    61701536
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
非正交多址接入下高可靠性协作多播技术研究
  • 批准号:
    61601347
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
不完全量测与通信局限下的多机器人协作实时SLAM一致性分析研究
  • 批准号:
    61305134
  • 批准年份:
    2013
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
以协作中继为核心的无线网络多资源联合分配问题研究
  • 批准号:
    61272133
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
基于协作通信的能量有效无线网络多信息流路由问题研究
  • 批准号:
    61170058
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Multi-isotope and microbial ecology approaches to investigate sedimentary nitrous oxide production and consumption in the northern Benguela upwelling system
合作研究:采用多同位素和微生物生态学方法研究本格拉北部上升流系统沉积一氧化二氮的产生和消耗
  • 批准号:
    2342606
  • 财政年份:
    2024
  • 资助金额:
    $ 18.28万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 18.28万
  • 项目类别:
    Standard Grant
Collaborative Research: DMS/NIGMS 1: Simulating cell migration with a multi-scale 3D model fed by intracellular tension sensing measurements
合作研究:DMS/NIGMS 1:使用由细胞内张力传感测量提供的多尺度 3D 模型模拟细胞迁移
  • 批准号:
    2347956
  • 财政年份:
    2024
  • 资助金额:
    $ 18.28万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347422
  • 财政年份:
    2024
  • 资助金额:
    $ 18.28万
  • 项目类别:
    Standard Grant
Collaborative Research: GEM--Multi-scale Magnetosphere-Ionosphere-Thermosphere Coupling Dynamics Driven by Bursty Bulk Flows
合作研究:GEM——突发体流驱动的多尺度磁层-电离层-热层耦合动力学
  • 批准号:
    2349872
  • 财政年份:
    2024
  • 资助金额:
    $ 18.28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了