Electrobiofabricated thin films for redox-linked bioelectronics
用于氧化还原连接生物电子学的电生物制造薄膜
基本信息
- 批准号:1932963
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Biology uses reduction-oxidation (redox) reactions (reactions in which a reactant in a chemical reaction gains one or more electrons) to perform important functions: energy harvesting (respiration); biosynthesis (production of a chemical compound by a living organism); defense (inflammation); and communication (redox signaling). The investigators' unique insight is that the electrical features of this redox modality--the "flow" of electrons through redox reactions--is accessible through simple electrode-based instrumentation and that applications can be developed to both observe (sense) and intervene-in (actuate) biological systems. The research team plans to develop the fundamental theories and methods needed to build and characterize a materials-interface for the "redox-based translation" between the molecular language of biology and the electrical language of modern devices. The investigators envision that redox-linked bioelectronics will enable a new generation of bioelectronic applications for medicine (e.g., for point-of-care diagnosis), commerce (e.g., wearable electronics), and the environment (e.g., remote sensing). Through this project the investigators will continue nurturing their research ecosystem that: (i) crosses disciplines and spans the globe; (ii) generates new theories/methods and iteratively accelerates their testing through diverse collaborations with problem-focused researchers; (iii) leverages contributions from basic and applied scientists/engineers from government, academia and the private sector; and (iv) disseminates these advances through individualized training (e.g., of graduate, undergraduate and high school researchers as well as teacher-training summer programs), integration into undergraduate curricula (at the community college, undergraduate college and minority serving university levels), and transfer to the public (by hosting specialized technical conferences and generating videos for the general public).The long-term vision of this project is to fuse the orthogonal information processing capabilities of biology and electronics through redox-linked bioelectronics. The focus of this project is on a subset of problems involving communication through a redox-signaling modality that is used by the immune system for inflammation and wound healing. The Research Plan is organized under three objectives. The FIRST objective is "Electro-bio-fabrication to Build the Bio-Device Interface." Hydrogel-based interfaces (i.e., films) will be created using an iterative approach that "teaches" how electrical signals can guide the emergence of complex structure from self-assembling polysaccharides (chitosans). The investigators propose to optimize the chitosan-based fabrication by controlling the local electrical field, salt concentration and electrostatic crosslinking. Advanced computational simulation and machine-learning will be implemented to gain mechanistic understanding of the fabrication process. The ability to controllably organize and reconfigure bio-based soft matter will enable the creation of adaptive, compatible, high-performance and sustainable materials systems for a range of life science applications. The SECOND Objective is "Electrochemistry to Discover and Characterize Materials." Novel electrochemical methods will be used for the automated, adaptive and ultimately autonomous discovery and characterization of materials that can control the transport (i.e., flow) of electrons and molecules. The simplicity, speed and data-richness of redox-based electrochemical measurements facilitates coupling to machine learning, and these capabilities could shift the paradigm for "chemical information" from a chemistry perspective (composition and concentration) to an information theory perspective. Such a paradigm shift could both improve reliability and facilitate translation for point-of-care and wearable electronics. The THIRD Objective is "Redox to Link Bio-electronic Communication." Test bed demonstrations will integrate activities across objectives. Synthetic biology constructs will be generated as observable "information processors" for a microfluidic gut-on-a-chip model of the microbiome. The immediate goal is to demonstrate that these multilayer films allow a bi-directional "flow" of molecularly-based redox information. These test bed studies are expected to provide the technical knowledge needed to build devices (e.g., capsular endoscopy systems) that can survey a redox environment and contribute to sculpting this environment.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物学利用还原氧化(氧化还原)反应(反应中的反应物中会获得一个或多个电子)来执行重要功能:能量收集(呼吸);生物合成(生物体生产化合物);防御(炎症);和通信(氧化还原信号)。研究人员的独特见解是,这种氧化还原模式的电气特征(通过氧化还原反应的电子的“流”)可以通过基于简单的电极仪器来访问,并且可以为观察(sisse)和干预(Actuate)生物系统开发应用。研究小组计划开发基本理论和方法,以在生物学分子语言和现代设备的电气语言之间建立和表征“基于氧化还原的翻译”材料界面。研究人员认为,氧化还原连接的生物电子学将使新一代的医学生物电子应用(例如,用于护理点诊断),商业(例如,可穿戴电子设备)和环境(例如,遥感)。通过这个项目,调查人员将继续培养其研究生态系统:(i)跨学科并跨越地球; (ii)生成新的理论/方法,并通过与以问题为中心的研究人员进行多种合作来迭代地加速其测试; (iii)利用政府,学术界和私营部门的基础和应用科学家/工程师的贡献; (iv)通过个性化培训(例如,毕业生,本科和高中研究人员以及教师培训计划),融入本科课程(在社区学院,本科学院和大学和少数群体中),并转移到公众(通过专业的技术会议上的投影),这是一般性的愿景,是该公司的发展态度,这是一般性的,这是一般性的愿景,通过氧化还原连接的生物电子学的生物学和电子产品的信息处理能力。 该项目的重点是通过免疫系统用于炎症和伤口愈合的氧化还原信号模态的一系列问题。 研究计划是在三个目标下组织的。 第一个目标是“构建生物设备接口的电力生物制造”。基于水凝胶的界面(即膜)将使用迭代方法创建,该方法“教授”电信号如何从自组装多糖(壳聚糖)中指导复杂结构的出现。 研究人员建议通过控制局部电场,盐浓度和静电交联来优化基于壳聚糖的制造。将实施高级计算模拟和机器学习,以获得对制造过程的机械理解。 能够控制和重新配置生物的软件能够为各种生活科学应用创建适应性,兼容,高性能和可持续材料系统。第二个目标是“发现和表征材料的电化学”。新型的电化学方法将用于自动化,自适应和最终自主发现以及可以控制电子和分子传输(即流动)的材料的表征。基于氧化还原电化学测量的简单性,速度和数据富度促进了与机器学习的耦合,并且这些能力可能会从化学的角度(组成和浓度)转移到信息理论的角度来转移“化学信息”的范式。这样的范式转移既可以提高可靠性,又可以促进护理点和可穿戴电子设备的转换。 第三个目标是“氧化还原以链接生物交流”。测试床演示将整合跨目标的活动。合成生物学构建体将作为可观察到的“信息处理器”生成,用于微生物组的微流体肠模型。直接目标是证明这些多层膜允许基于分子的氧化还原信息的双向“流”。 预计这些测试床研究将提供建立设备(例如囊膜内窥镜系统)所需的技术知识,以调查氧化还原环境并为雕刻这种环境做出贡献。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来通过评估来支持的。
项目成果
期刊论文数量(31)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
System-Level Network Analysis of a Catechol Component for Redox Bioelectronics
- DOI:10.1021/acsaelm.2c00269
- 发表时间:2022-05
- 期刊:
- 影响因子:4.7
- 作者:Zhiling Zhao;Si Wu;Eunkyoung Kim;Chen‐yu Chen;J. Rzasa;Xiaowen Shi;W. Bentley;G. Payne
- 通讯作者:Zhiling Zhao;Si Wu;Eunkyoung Kim;Chen‐yu Chen;J. Rzasa;Xiaowen Shi;W. Bentley;G. Payne
Characterizing Electron Flow through Catechol‐Graphene Composite Hydrogels
- DOI:10.1002/admi.202202021
- 发表时间:2022-10
- 期刊:
- 影响因子:5.4
- 作者:Eunkyoung Kim;R. Argenziano;Zhiling Zhao;Chen‐yu Chen;Margaret Shen;W. Bentley;A. Napolitano;
- 通讯作者:Eunkyoung Kim;R. Argenziano;Zhiling Zhao;Chen‐yu Chen;Margaret Shen;W. Bentley;A. Napolitano;
Hydrogel Patterning with Catechol Enables Networked Electron Flow
- DOI:10.1002/adfm.202007709
- 发表时间:2021-01
- 期刊:
- 影响因子:19
- 作者:Si Wu;Zhiling Zhao;J. Rzasa;Eunkyoung Kim;Jinyang Li;Eric VanArsdale;W. Bentley;Xiaowen Shi;G. Payne
- 通讯作者:Si Wu;Zhiling Zhao;J. Rzasa;Eunkyoung Kim;Jinyang Li;Eric VanArsdale;W. Bentley;Xiaowen Shi;G. Payne
Catechol‐Based Molecular Memory Film for Redox Linked Bioelectronics
- DOI:10.1002/aelm.202000452
- 发表时间:2020-07
- 期刊:
- 影响因子:6.2
- 作者:Si Wu;Eunkyoung Kim;Chen‐yu Chen;Jinyang Li;Eric VanArsdale;Christopher Grieco;B. Kohler;W. Bentley;Xiaowen Shi;G. Payne
- 通讯作者:Si Wu;Eunkyoung Kim;Chen‐yu Chen;Jinyang Li;Eric VanArsdale;Christopher Grieco;B. Kohler;W. Bentley;Xiaowen Shi;G. Payne
Reversible Electronic Patterning of a Dynamically Responsive Hydrogel Medium
- DOI:10.1002/adfm.202302549
- 发表时间:2023-05
- 期刊:
- 影响因子:19
- 作者:Chen Yang;Yi Liu;Manya Wang;Hui Hu;Zhongtao Zhao;Hongbing Deng;G. Payne;Xiaowen Shi
- 通讯作者:Chen Yang;Yi Liu;Manya Wang;Hui Hu;Zhongtao Zhao;Hongbing Deng;G. Payne;Xiaowen Shi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Payne其他文献
RESOURCECODE: A Python package for statistical analysis of sea-state hindcast data
RESOURCECODE:用于海况后报数据统计分析的 Python 包
- DOI:
10.21105/joss.04366 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
N. Raillard;Simon Chabot;Christophe Maisondieu;David Darbynian;Gregory Payne;L. Papillon - 通讯作者:
L. Papillon
Evaluation of methods for characterizing the fine particulate matter emissions from aircraft and other diffusion flame combustion aerosol sources
飞机和其他扩散火焰燃烧气溶胶源细颗粒物排放特征方法的评估
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.5
- 作者:
R. Giannelli;J. Stevens;J. Kinsey;David Kittelson;Alla Zelenyuk;R. Howard;Mary Forde;B. Hoffman;C. Leggett;Bruce Maeroff;Nick Bies;Jacob Swanson;K. Suski;Gregory Payne;Julien Manin;Richard Frazee;Tim Onasch;Andrew Freedman;Imad A. Khalek;Huzeifa Badshah;Daniel Preece;V. Premnath;Scott Agnew - 通讯作者:
Scott Agnew
Gregory Payne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Payne', 18)}}的其他基金
DMREF: Thin Film Biofabrication for Integrated Bio-electronics
DMREF:集成生物电子学薄膜生物制造
- 批准号:
1435957 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Chitosan To Functionalize Food (Bio)Sensors
壳聚糖使食品(生物)传感器功能化
- 批准号:
1042870 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Chitosan To Functionalize Food (Bio)Sensors
壳聚糖使食品(生物)传感器功能化
- 批准号:
0650650 - 财政年份:2007
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Combinatorial Approach to Enzymatic Polymer Processing
酶促聚合物加工的组合方法
- 批准号:
0114790 - 财政年份:2001
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Improved Separations by Coupling Ion-Pair Extraction with Adsorption
通过离子对萃取与吸附耦合改进分离
- 批准号:
9531812 - 财政年份:1996
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Enzymatic Approach to Waste Minimization: Tyrosinase Reaction Chitosan Adsorption
最大限度减少废物的酶法:酪氨酸酶反应壳聚糖吸附
- 批准号:
9315449 - 财政年份:1994
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Award For Creativity in Engineering for Kimberlee Wallace
金伯利·华莱士 (Kimberlee Wallace) 荣获工程创意奖
- 批准号:
9396242 - 财政年份:1993
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Award For Creativity in Engineering for Kimberlee Wallace
金伯利·华莱士 (Kimberlee Wallace) 荣获工程创意奖
- 批准号:
9021048 - 财政年份:1990
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Developing Polymeric Separating Agents to Mimic the Specificity of Protein Binding
开发聚合物分离剂来模拟蛋白质结合的特异性
- 批准号:
8912141 - 财政年份:1990
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Research Initiation Award: Investigation of the Effects of Dissolved Oxygen and Dissolved Carbon Dioxide on Embryogenesis and the Competence for Embryogenesis
研究启动奖:溶解氧和溶解二氧化碳对胚胎发生的影响和胚胎发生能力的研究
- 批准号:
8707827 - 财政年份:1987
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
亚快速凝固铝合金薄带微观组织的脉冲电流调控与协同强韧化
- 批准号:52371119
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
双参量同步监测的薄包层Ω形光纤LSPR-干涉传感器构建及机理研究
- 批准号:62305235
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向高性能硅MOS量子比特应用的高κ薄栅二维电子气迁移率影响机制及提升研究
- 批准号:12374076
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
具有经典参数的薄的距离正则图的分类问题研究
- 批准号:12371339
- 批准年份:2023
- 资助金额:44.00 万元
- 项目类别:面上项目
人羊膜间充质干细胞通过分泌TGF-β1调控SLC2A1表达诱导巨噬细胞向M2重编程修复薄型子宫内膜的研究
- 批准号:82360314
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
- 批准号:
2349338 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Emergent quantum phenomena in epitaxial thin films of topological Dirac semimetal and its heterostructures
职业:拓扑狄拉克半金属及其异质结构外延薄膜中的量子现象
- 批准号:
2339309 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Lubrication by Lamellar Liquid Crystals - An in-situ investigation of thin films with Brewster Angle microscopy technology
层状液晶润滑 - 使用布鲁斯特角显微镜技术对薄膜进行原位研究
- 批准号:
EP/Y023277/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Metal-organic framework thin films for electrocatalysis: A combined ex situ and in situ investigation
用于电催化的金属有机骨架薄膜:异位和原位联合研究
- 批准号:
EP/Y002911/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant