Collaborative Research: Machine Learning and Inverse Problems in Discrete and Continuous Settings

协作研究:离散和连续环境中的机器学习和反问题

基本信息

  • 批准号:
    1912818
  • 负责人:
  • 金额:
    $ 5.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-15 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

The goal of this project is to push forward the principled use of data in science and applications. By means of rigorous mathematical analysis, the PIs intend to uncover the hidden unity of seemingly unrelated learning problems and methodologies, facilitating the transfer of theoretical and computational developments and unifying the growing applied literature. The proposed work intends to partially satisfy the societal and scientific need to build paradigms that combine data and complex mathematical models to obtain more accurate predictions while accounting for uncertainty quantification.The PIs intend to address some of the new challenges that the increasing complexity of models and the growing size of data sets have brought to the foundations of optimization and Bayesian approaches to machine learning and inverse problems. This project will emphasize the connection between statistical consistency and algorithmic scalability: consistent problems are often computationally tractable, and a key principle for the design of scalable algorithms is to exploit statistical consistency wherever present. The specific research projects that will be pursued have five overarching themes: i) The analysis of continuum limits of discrete objects defined on random data.ii) The study of new regularization techniques. iii) The design and analysis of scalable sampling algorithms. iv) The use of discrete approximations of complex models. v) The quantification of uncertainty in the solutions. Contributing in a substantial manner to this wide range of themes will require close collaboration between the PIs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是推动数据在科学和应用中的原则性使用。通过严格的数学分析,PI 旨在揭示看似无关的学习问题和方法论的隐藏统一性,促进理论和计算发展的转移,并统一不断增长的应用文献。拟议的工作旨在部分满足社会和科学的需求,即建立结合数据和复杂数学模型的范式,以获得更准确的预测,同时考虑不确定性量化。 PI 旨在解决模型复杂性不断增加和数据集规模的不断增长为机器学习和逆问题的优化和贝叶斯方法奠定了基础。该项目将强调统计一致性和算法可扩展性之间的联系:一致问题通常在计算上是可以处理的,可扩展算法设计的一个关键原则是利用存在的统计一致性。将进行的具体研究项目有五个总体主题:i)对随机数据定义的离散对象的连续极限进行分析。ii)新的正则化技术的研究。 iii)可扩展采样算法的设计和分析。 iv) 使用复杂模型的离散近似。 v) 解决方案中不确定性的量化。对如此广泛的主题做出实质性贡献需要 PI 之间的密切合作。该奖项反映了 NSF 的法定使命,并且通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data-driven forward discretizations for Bayesian inversion
贝叶斯反演的数据驱动前向离散化
  • DOI:
    10.1088/1361-6420/abb2fa
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Bigoni, D;Chen, Y;Trillos, N Garcia;Marzouk, Y;Sanz
  • 通讯作者:
    Sanz
Variational Characterizations of Local Entropy and Heat Regularization in Deep Learning
深度学习中局部熵和热正则化的变分特征
  • DOI:
    10.3390/e21050511
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    García Trillos, Nicolas;Kaplan, Zachary;Sanz
  • 通讯作者:
    Sanz
Local Regularization of Noisy Point Clouds: Improved Global Geometric Estimates and Data Analysis
噪声点云的局部正则化:改进的全局几何估计和数据分析
HMC: Reducing the number of rejections by not using leapfrog and some results on the acceptance rate
HMC:通过不使用蛙跳来减少拒绝数量以及接受率的一些结果
  • DOI:
    10.1016/j.jcp.2021.110333
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Calvo, M.P.;Sanz;Sanz
  • 通讯作者:
    Sanz
Bayesian Update with Importance Sampling: Required Sample Size
具有重要性采样的贝叶斯更新:所需的样本量
  • DOI:
    10.3390/e23010022
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Sanz;Wang, Zijian
  • 通讯作者:
    Wang, Zijian
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Sanz-Alonso其他文献

Daniel Sanz-Alonso的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Sanz-Alonso', 18)}}的其他基金

CAREER: Ensemble Kalman Methods and Bayesian Optimization in Inverse Problems and Data Assimilation
职业:反问题和数据同化中的集成卡尔曼方法和贝叶斯优化
  • 批准号:
    2237628
  • 财政年份:
    2023
  • 资助金额:
    $ 5.86万
  • 项目类别:
    Continuing Grant
ATD: Gaussian Fields: Graph Representations and Black-Box Optimization Algorithms
ATD:高斯场:图表示和黑盒优化算法
  • 批准号:
    2027056
  • 财政年份:
    2020
  • 资助金额:
    $ 5.86万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Udwadia-Kalaba方法的柔性关节机器人动力学建模与主动柔顺性控制研究
  • 批准号:
    51705116
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
刚柔耦合协作机器人顺应性交互动力学研究
  • 批准号:
    91748111
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    重大研究计划
面向人机共融协作的柔性双臂机器人安全作业机理研究
  • 批准号:
    51575157
  • 批准年份:
    2015
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
不完全量测与通信局限下的多机器人协作实时SLAM一致性分析研究
  • 批准号:
    61305134
  • 批准年份:
    2013
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于群体智能的多Agent协作模型与适应性研究
  • 批准号:
    60905066
  • 批准年份:
    2009
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
  • 批准号:
    2323084
  • 财政年份:
    2024
  • 资助金额:
    $ 5.86万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    $ 5.86万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 5.86万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 5.86万
  • 项目类别:
    Continuing Grant
Collaborative Research:CIF:Small: Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
  • 批准号:
    2326904
  • 财政年份:
    2024
  • 资助金额:
    $ 5.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了