Collaborative Research: Frameworks: Machine learning and FPGA computing for real-time applications in big-data physics experiments

合作研究:框架:大数据物理实验中实时应用的机器学习和 FPGA 计算

基本信息

项目摘要

The cyberinfrastructure needs for gravitational wave astrophysics, high energy physics, and large-scale electromagnetic surveys have rapidly evolved in recent years. The construction and upgrade of the facilities used to enable scientific discovery in these disparate fields of research have led to a common pair of computational grand challenges: (i) datasets with ever-increasing complexity and volume; and (ii) data mining analyses that must be performed in real-time with oversubscribed computational resources. Furthermore, the convergence of gravitational wave astrophysics with electromagnetic and astroparticle surveys, the very birth of Multi-Messenger Astrophysics, has already provided a glimpse of the transformational discoveries that it will enable in years to come. Given the unique potential for scientific discovery with the Large Hadron Collider (LHC) and the combination of the Laser Interferometer Gravitational-wave Observatory (LIGO) and the Large Synoptic Survey Telescope (LSST) for Multi-Messenger Astrophysics, the community needs to accelerate the development and exploitation of deep learning algorithms that will outperform existing approaches. This project serves the national interest, as stated by NSF's mission, by promoting the progress of science. It will push the frontiers of deep learning at scale, demonstrating the versatility and scalability of these methods to accelerate and enable new physics in the big data era. Because these methods are also applicable to many other parts of our national and global economy and society, this work will positively impact many fields. The students and junior scientists to be mentored and trained in this research will interact closely with our industry partners, creating new career opportunities, and strengthening synergies between academia and industry. The team will share the algorithms with the community through open source software repositories, and through our tutorials and workshops the team will train the community regarding software credit and software citation.In this project, the PIs will build upon our recent work developing high quality deep learning algorithms for real-time data analytics of time-series and image datasets, as open source software. This work combines scalable deep learning algorithms, trained with TB-size datasets within minutes using thousands of GPUs/CPUs, with state-of-the-art approaches to endow the predictions of deterministic deep learning models with complete posterior distributions. The team will also investigate the use of Field Programmable Gate Arrays (FPGAs) to accelerate low-latency inference of machine learning algorithms to minimize the demands of future computing, which is a central goal for Multi-Messenger Astrophysics and particle physics. The open source tools to be developed as part of these activities will be readily shared with and adopted by LIGO, LHC, and LSST as core data analytics algorithms that will significantly increase the speed and depth of existing algorithms, enabling new physics while requiring minimal computational resources for real-time inferences analyses. The team will organize deep learning workshops and bootcamps to train students and researchers on how to use and contribute to our framework, creating a wide network of contributors and developers across key science missions. The team will leverage existing open source and interactive model repositories, such as the Data and Learning Hub for Science (DLHub) at Argonne, to reach out to a large cross-section of communities that analyze open datasets from LIGO, LHC, and LSST, and that will benefit from the use of these technologies that require minimal computational resources for inference tasks.This project is supported by the Office of Advanced Cyberinfrastructure in the Directorate for Computer & Information Science & Engineering and the Division of Physics in the Directorate of Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,引力波天体物理学、高能物理学和大规模电磁调查的网络基础设施需求迅速发展。在这些不同的研究领域中,用于实现科学发现的设施的建设和升级导致了一系列共同的巨大计算挑战:(i)数据集的复杂性和数量不断增加; (ii) 必须使用超额计算资源实时执行的数据挖掘分析。此外,引力波天体物理学与电磁和天体粒子勘测的融合,即多信使天体物理学的诞生,已经让我们得以一睹它将在未来几年实现的变革性发现。鉴于大型强子对撞机 (LHC) 以及激光干涉仪引力波天文台 (LIGO) 和大型综合巡天望远镜 (LSST) 的组合在多信使天体物理学方面具有独特的科学发现潜力,社区需要加快开发和利用超越现有方法的深度学习算法。正如 NSF 的使命所述,该项目通过促进科学进步来服务于国家利益。它将大规模推动深度学习的前沿,展示这些方法的多功能性和可扩展性,以加速和实现大数据时代的新物理学。由于这些方法也适用于我们国家和全球经济和社会的许多其他部分,因此这项工作将对许多领域产生积极影响。在这项研究中接受指导和培训的学生和初级科学家将与我们的行业合作伙伴密切互动,创造新的职业机会,并加强学术界和工业界之间的协同作用。该团队将通过开源软件存储库与社区共享算法,并通过我们的教程和研讨会,对社区进行软件信用和软件引用方面的培训。在这个项目中,PI 将在我们最近的工作基础上开发高质量的深度学习作为开源软件,用于时间序列和图像数据集实时数据分析的学习算法。这项工作结合了可扩展的深度学习算法,使用数千个 GPU/CPU 在几分钟内使用 TB 大小的数据集进行训练,并采用最先进的方法来赋予确定性深度学习模型的预测完整的后验分布。该团队还将研究使用现场可编程门阵列(FPGA)来加速机器学习算法的低延迟推理,以最大限度地减少未来计算的需求,这是多信使天体物理学和粒子物理学的中心目标。作为这些活动的一部分而开发的开源工具将很容易与 LIGO、LHC 和 LSST 共享并被它们采用作为核心数据分析算法,这将显着提高现有算法的速度和深度,在需要最少计算的情况下实现新的物理学实时推理分析资源。该团队将组织深度学习研讨会和训练营,培训学生和研究人员如何使用和为我们的框架做出贡献,从而在关键科学任务中创建广泛的贡献者和开发人员网络。该团队将利用现有的开源和交互式模型存储库,例如阿贡的科学数据和学习中心 (DLHub),来接触分析来自 LIGO、LHC 和 LSST 的开放数据集的大型社区。这将受益于使用这些需要最少计算资源来完成推理任务的技术。该项目得到了计算机与信息科学与工程局高级网络基础设施办公室和物理局的支持。数学和物理科学。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Magnetohydrodynamics with physics informed neural operators
Numerical relativity higher order gravitational waveforms of eccentric, spinning, nonprecessing binary black hole mergers
  • DOI:
    10.1103/physrevd.107.064038
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    5
  • 作者:
    A. Joshi;S. Rosofsky;R. Haas;E. Huerta
  • 通讯作者:
    A. Joshi;S. Rosofsky;R. Haas;E. Huerta
Enabling real-time multi-messenger astrophysics discoveries with deep learning
  • DOI:
    10.1038/s42254-019-0097-4
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
    38.5
  • 作者:
    Huerta, E. A.;Allen, Gabrielle;Zhao, Zhizhen
  • 通讯作者:
    Zhao, Zhizhen
Deep Learning with Quantized Neural Networks for Gravitational-wave Forecasting of Eccentric Compact Binary Coalescence
  • DOI:
    10.3847/1538-4357/ac1121
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Wei-Wei;E. Huerta;Mengshen Yun;N. Loutrel;Md Arif Shaikh;Prayush Kumar;R. Haas;V. Kindratenko
  • 通讯作者:
    Wei Wei-Wei;E. Huerta;Mengshen Yun;N. Loutrel;Md Arif Shaikh;Prayush Kumar;R. Haas;V. Kindratenko
Observation of eccentric binary black hole mergers with second and third generation gravitational wave detector networks
  • DOI:
    10.1103/physrevd.103.084018
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Zhuo Chen;E. Huerta;Joseph Adamo;R. Haas;É. O’Shea;Prayush Kumar;C. Moore
  • 通讯作者:
    Zhuo Chen;E. Huerta;Joseph Adamo;R. Haas;É. O’Shea;Prayush Kumar;C. Moore
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Volodymyr Kindratenko其他文献

Volodymyr Kindratenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Volodymyr Kindratenko', 18)}}的其他基金

Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411295
  • 财政年份:
    2024
  • 资助金额:
    $ 65.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: Diamond: Democratizing Large Neural Network Model Training for Science
合作研究:框架:钻石:科学大型神经网络模型训练的民主化
  • 批准号:
    2311768
  • 财政年份:
    2023
  • 资助金额:
    $ 65.13万
  • 项目类别:
    Standard Grant
REU Site: The future of discovery: training students to build and apply open source machine learning models and tools
REU 网站:发现的未来:培训学生构建和应用开源机器学习模型和工具
  • 批准号:
    2050195
  • 财政年份:
    2021
  • 资助金额:
    $ 65.13万
  • 项目类别:
    Standard Grant
SGER: Investigating Application Analysis and Design Methodologies for Computational Accelerators
SGER:研究计算加速器的应用分析和设计方法
  • 批准号:
    0810563
  • 财政年份:
    2008
  • 资助金额:
    $ 65.13万
  • 项目类别:
    Standard Grant
Geoscience Applications on Petascale Systems: Requirements Workshops; Early in August-2005 for a 4-6 Weeks Period
Petascale 系统上的地球科学应用:需求研讨会;
  • 批准号:
    0540688
  • 财政年份:
    2005
  • 资助金额:
    $ 65.13万
  • 项目类别:
    Standard Grant

相似国自然基金

中国外来入侵植物优先管理框架研究:分布格局、驱动因素与潜在分布区的综合分析
  • 批准号:
    32372565
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
金属有机框架对M-Nx基PEMFCs阴极催化层的多重调控机制研究
  • 批准号:
    22375017
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于新框架土壤生物促进或抑制外来植物入侵发生条件和机制研究
  • 批准号:
    32371749
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于共价有机框架薄膜的气体传感器及其敏感机理研究
  • 批准号:
    62371299
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
选择性分离水产品中全氟辛酸的金属有机框架的设计制备及吸附机制研究
  • 批准号:
    32302234
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411152
  • 财政年份:
    2024
  • 资助金额:
    $ 65.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411297
  • 财政年份:
    2024
  • 资助金额:
    $ 65.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411298
  • 财政年份:
    2024
  • 资助金额:
    $ 65.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 65.13万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
  • 批准号:
    2347322
  • 财政年份:
    2024
  • 资助金额:
    $ 65.13万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了