Support for LIGO Data Analysis and Instrumentation Research at the University of Texas Rio Grande Valley

支持德克萨斯大学格兰德河谷分校的 LIGO 数据分析和仪器研究

基本信息

  • 批准号:
    1912630
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

This award supports research in LIGO instrumentation and data analysis and it addresses the priority areas of NSF's "Windows on the Universe" Big Idea. Gravitational waves (GW) have been directly detected in 2015. So far, two different types of sources have been detected, viz. binary black holes and binary neutron stars. However, there is a wide repertoire of potential sources yet to be detected. The third generation of GW detectors are also in the offing. To address these new challenges in the next decade, this award supports experimental innovations and novel detector characterization and data analysis techniques to further enhance probability of detection of new sources and further extend the GW visibility field. Core collapse supernovae (CCSN) are one of such highly anticipated yet equally challenging sources. The science payoffs from such a detection will be huge, but it dares to elude us because of the low occurrence rates and weak signal strengths. The award will implement a new technique that, based on recent studies, is expected to enhance the detection sensitivity of CCSN. At the same time, further data quality studies will be conducted to study and mitigate noise generated by turbulent airflow. On the instrumental side, research will be conducted to calculate the length response from the advanced LIGO detectors to better understand the high frequency response. While this research will reflect on fundamental understanding of a wide variety of issues, it will also be a great opportunity to train the undergraduate and graduate students in GW research and strengthen STEM workforce. The algorithms and numerical models that will be developed during this study will have a broader application beyond the GW data analysis. With the upcoming O3 run of the LIGO detectors, it is anticipated the detection of other types of sources and even unknown ones. With the goal of significantly increasing the science reach of the advanced detectors, the UTRGV team will work on projects in the following major areas. 1. Noise characterization: the development of a numerical model to generate realistic finely-sampled temperature fields and run a full hydrodynamic simulation, to determine the frequency distribution of turbulent vortices, and to see how turbulent airflow acts back on the temperature field. 2. Instrumentation research: studies of the aLIGO interferometer configuration in the interferometer model, and evaluating the residual uncertainties at high frequencies. 3. Efficient methods for GW emission from core collapse supernovae: development and application of innovative data analysis algorithms geared towards enhancement of efficiency in detecting weak unmodeled GW signals from core collapse supernovae burst sources. A data pre-processing method (called "TSD"), derived from the Harmonic Regeneration Noise Reduction (HRNR) technique, will be integrated with existing network analysis pipelines to boost their sensitivity to post-core-bounce-phase supernova signals, followed by characterization of performance enhancement and waveform reconstruction for such signals injected in observation-run data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持 LIGO 仪器和数据分析方面的研究,并解决了 NSF“宇宙之窗”大构想的优先领域。引力波(GW)已于2015年被直接探测到。迄今为止,已探测到两种不同类型的源,即引力波。双星黑洞和双中子星。然而,还有大量潜在来源尚未被发现。第三代引力波探测器也即将推出。为了应对未来十年的这些新挑战,该奖项支持实验创新和新颖的探测器表征和数据分析技术,以进一步提高新源的探测概率并进一步扩展引力波可见性领域。核心塌缩超新星(CCSN)是备受期待但同样具有挑战性的来源之一。这种检测的科学回报将是巨大的,但由于发生率低且信号强度弱,它敢于逃避我们。该奖项将实施一项基于最近研究的新技术,预计将提高 CCSN 的检测灵敏度。同时,还将进行进一步的数据质量研究,以研究和减轻湍流气流产生的噪声。在仪器方面,将进行研究以计算先进 LIGO 探测器的长度响应,以更好地了解高频响应。虽然这项研究将反映对各种问题的基本理解,但它也将是培训 GW 研究中的本科生和研究生并加强 STEM 劳动力的绝佳机会。本研究期间将开发的算法和数值模型将具有比引力波数据分析更广泛的应用。随着 LIGO 探测器即将进行 O3 运行,预计将能够探测到其他类型的源,甚至未知源。为了显着提高先进探测器的科学范围,UTRGV 团队将致力于以下主要领域的项目。 1. 噪声表征:开发数值模型来生成真实的精细采样温度场并运行完整的流体动力学模拟,以确定湍流涡流的频率分布,并了解湍流气流如何作用在温度场上。 2. 仪器研究:研究aLIGO干涉仪在干涉仪模型中的配置,并评估高频下的残余不确定性。 3. 核心塌陷超新星爆发引力波的有效方法:开发和应用创新的数据分析算法,旨在提高检测核心塌陷超新星爆发源的微弱未建模引力波信号的效率。源自谐波再生降噪(HRNR)技术的数据预处理方法(称为“TSD”)将与现有的网络分析管道集成,以提高其对核后弹跳阶段超新星信号的灵敏度,然后该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(41)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars
毫秒脉冲星赤道椭圆率的引力波约束
  • DOI:
    10.3847/2041-8213/abb655
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abbott, R.;Abbott, T. D.;Abraham, S.;Acernese, F.;Ackley, K.;Adams, A.;Adams, C.;Adhikari, R. X.;Adya, V. B.;Affeldt, C.;et al
  • 通讯作者:
    et al
A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs
第一次和第二次引力波观测运行中的紧凑双星合并的费米-GBM 和 LIGO/Virgo 联合分析
  • DOI:
    10.3847/1538-4357/ab7d3e
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hamburg, R.;Fletcher, C.;Burns, E.;Goldstein, A.;Bissaldi, E.;Briggs, M. S.;Cleveland, W. H.;Giles, M. M.;Hui, C. M.;Kocevski, D.;et al
  • 通讯作者:
    et al
All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data
LIGO O3 数据中旋转黑洞周围标量玻色子云的全天空引力波发射搜索
  • DOI:
    10.1103/physrevd.105.102001
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Abbott, R.;Abe, H.;Acernese, F.;Ackley, K.;Adhikari, N.;Adhikari, R. X.;Adkins, V. K.;Adya, V. B.;Affeldt, C.;Agarwal, D.;et al
  • 通讯作者:
    et al
GW190521: A Binary Black Hole Merger with a Total Mass of 150  M⊙
GW190521:总质量为 150M·M 的二元黑洞合并
  • DOI:
    10.1103/physrevlett.125.101102
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Abbott, R.;Abbott, T. D.;Abraham, S.;Acernese, F.;Ackley, K.;Adams, C.;Adhikari, R. X.;Adya, V. B.;Affeldt, C.;Agathos, M.;et al
  • 通讯作者:
    et al
GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M ⊙
GW190425:观察总质量≤3.4M≤的致密二元聚结
  • DOI:
    10.3847/2041-8213/ab75f5
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abbott, B. P.;Abbott, R.;Abbott, T. D.;Abraham, S.;Acernese, F.;Ackley, K.;Adams, C.;Adhikari, R. X.;Adya, V. B.;Affeldt, C.;et al
  • 通讯作者:
    et al
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Volker Quetschke其他文献

Volker Quetschke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Volker Quetschke', 18)}}的其他基金

REU and RET Site in Physics at UTRGV
UTRGV 物理 REU 和 RET 站点
  • 批准号:
    2244167
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Support for LIGO Data Analysis and Instrumentation Research at the University of Texas Rio Grande Valley
支持德克萨斯大学格兰德河谷分校的 LIGO 数据分析和仪器研究
  • 批准号:
    2207999
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
REU and RET Site in Physics at UTRGV
UTRGV 物理 REU 和 RET 站点
  • 批准号:
    1757830
  • 财政年份:
    2018
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于LIGO/Virgo/KAGRA数据的引力波天文研究
  • 批准号:
    12233011
  • 批准年份:
    2022
  • 资助金额:
    290 万元
  • 项目类别:
    重点项目
协同无人机激光雷达和时间序列遥感数据的杉木蓄积量估测研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
联合激光雷达和多角度影像数据的森林冠层和林下植被LAI反演研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于高光谱和激光雷达数据的森林生物量估测研究
  • 批准号:
    32101524
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于星载激光雷达和辐射计网测量数据的大气沙尘大尺度变化研究
  • 批准号:
    42111530292
  • 批准年份:
    2021
  • 资助金额:
    20 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Support for LIGO Data Analysis and Instrumentation Research at the University of Texas Rio Grande Valley
支持德克萨斯大学格兰德河谷分校的 LIGO 数据分析和仪器研究
  • 批准号:
    2207999
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Data Infrastructure for Open Science in Support of LIGO and IceCube
合作研究:支持 LIGO 和 IceCube 的开放科学数据基础设施
  • 批准号:
    1841479
  • 财政年份:
    2018
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Data Infrastructure for Open Science in Support of LIGO and IceCube
合作研究:支持 LIGO 和 IceCube 的开放科学数据基础设施
  • 批准号:
    1841487
  • 财政年份:
    2018
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Data Infrastructure for Open Science in Support of LIGO and IceCube
合作研究:支持 LIGO 和 IceCube 的开放科学数据基础设施
  • 批准号:
    1841530
  • 财政年份:
    2018
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Data Infrastructure for Open Science in Support of LIGO and IceCube
合作研究:支持 LIGO 和 IceCube 的开放科学数据基础设施
  • 批准号:
    1841475
  • 财政年份:
    2018
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了