Collaborative Research: Bioinspired liquid-gated membranes reduce biofouling
合作研究:仿生液体门控膜减少生物污垢
基本信息
- 批准号:1930610
- 负责人:
- 金额:$ 34.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ultrafiltration membranes are considered the 'state-of-the-art' material for water treatment, because they effectively remove particulates and waterborne pathogens from drinking water. Unfortunately, over time, membranes become fouled and require cleaning, which increases water treatment process downtime. Improving membrane lifetime is vital to decreasing the cost and energy required to produce clean water. In nature, the Nepenthes Pitcher Plant uses a thin, immobilized liquid layer to create an ultra-slippery surface which causes insects to slide into its cup. Inspired by the pitcher plant, this research project will develop a new approach to membrane design that reduces the adhesion of foulants and thereby enables the membrane's long-term operation. By properly selecting a stable 'gating liquid' that provides a thin protective layer on the membrane, reversible pore gates are created that quickly open and shut to enable liquid transport while reducing the ability of foulants to attach. Furthermore, when pressure is released, the gating liquid refills the pores, dislodging contaminants trapped within the pores and enabling flux recovery. In addition to improving the functionality of membranes for water purification, understanding the materials-biology interface will help inform the design of new membranes for a broad range of separations, including food processing, blood filtration, and protein purification. A key component of this research is providing an experiential platform to give women and underrepresented groups the confidence and tools to become successful engineers. This research project will engineer high-flux liquid-gated membranes that resist biofouling without the use of biocides or physical cleaning. The approach employs fabricating liquid-gated membranes using non-toxic perfluoropolyether liquids with various viscosities systematically paired with fluorinated polyethersulfone ultrafiltration membranes to establish a continuous, stable liquid gate. Data acquired from pure water flux experiments as a function of transmembrane pressures will establish the membrane's performance and in-line liquid-gate regeneration capabilities. This experimental data will be benchmarked against both theoretical and chip-based models. The biofouling resistance properties of liquid-gated membranes will be established using organic and biological foulants. This research project provides a critical translation between the structure and properties of liquid-gated membranes and the use of a bioinspired materials approach to reduce the attachment of microbes to membranes while enabling a facile mechanism for flux recovery. This research project will result in numerous new research experiences for women and underrepresented groups both at the undergraduate and graduate level at the University of Massachusetts and the University of Maine. Collaboratively, this team will develop, pilot, and broadly disseminate an educational module called, 'Bioinspired Clean Water Solutions' to middle and high school students. This project is jointly funded by the Molecular Separations program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
超滤膜被认为是水处理的“最新”材料,因为它们有效地从饮用水中去除了颗粒和水传播病原体。不幸的是,随着时间的流逝,膜变得污染并需要清洁,这增加了水处理过程的停机时间。改善膜寿命对于降低产生清洁水所需的成本和能量至关重要。在自然界中,尼彭尼斯(Nepenthes)投资厂使用薄薄的液体层来产生超滑发的表面,从而导致昆虫滑入其杯子中。受投手工厂的启发,该研究项目将开发一种新的膜设计方法,可降低污垢的粘附,从而实现膜的长期操作。通过正确选择稳定的“门控液体”,该稳定的“门控液体”在膜上提供薄的保护层,可以创建可逆的孔门,以迅速打开并关闭以实现液体运输,同时降低了污垢固定物的能力。此外,当释放压力时,门控液体会补充毛孔,驱除被困在孔内的污染物并实现通量恢复。除了提高膜净化膜的功能外,了解材料生物学界面还将有助于为新膜的设计提供广泛分离的设计,包括食物加工,血液过滤和蛋白质纯化。这项研究的一个关键组成部分是提供一个经验平台,以使妇女和代表性不足的小组成为成功工程师的信心和工具。该研究项目将设计高通量液体门控膜,该膜在不使用杀菌剂或物理清洁的情况下抵抗生物污染。该方法采用液体门控膜的制造,使用无毒的全氟球叶液体具有各种粘性系统与氟化的聚乙烯超滤膜系统配对的各种粘性液体,以建立连续稳定的液态门。从纯水通量实验中获取的数据随跨膜压力的函数将确定膜的性能和在线液体栅极再生能力。该实验数据将针对理论和基于芯片的模型进行基准测试。将使用有机和生物污垢建立液态门控膜的生物污染耐药性。该研究项目提供了液体门控膜的结构和特性与使用生物启发的材料方法之间的关键翻译,以减少微生物在膜上的附着,同时启用可轻松恢复的便捷机制。该研究项目将在马萨诸塞大学和缅因州大学的本科生和研究生层面上为妇女和代表性不足的群体带来许多新的研究经验。合作地,该团队将开发,试点并广泛传播一个名为“生物启发的清洁水解决方案”的教育模块,向中学生和高中生。该项目由分子分离计划和启发竞争性研究的既定计划共同资助。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,认为值得通过评估值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanopatterning Reduces Bacteria Fouling in Ultrafiltration
纳米图案减少超滤中的细菌污染
- DOI:10.1021/acsestwater.2c00256
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ward, Lauren M.;Shah, Rushabh M.;Schiffman, Jessica D.;Weinman, Steven T.
- 通讯作者:Weinman, Steven T.
Ultrasound-assisted dopamine polymerization: rapid and oxidizing agent-free polydopamine coatings on membrane surfaces
超声辅助多巴胺聚合:膜表面快速且无氧化剂的聚多巴胺涂层
- DOI:10.1039/d1cc05960b
- 发表时间:2021
- 期刊:
- 影响因子:4.9
- 作者:Cihanoğlu, Aydın;Schiffman, Jessica D.;Altinkaya, Sacide Alsoy
- 通讯作者:Altinkaya, Sacide Alsoy
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessica Schiffman其他文献
Jessica Schiffman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessica Schiffman', 18)}}的其他基金
BRITE Synergy: Chemically Resilient, Fouling Resistant Separation Membranes Manufactured Using Aqueous Phase Inversion
BRITE Synergy:采用水相转化技术制造的化学弹性、防污分离膜
- 批准号:
2227307 - 财政年份:2023
- 资助金额:
$ 34.05万 - 项目类别:
Standard Grant
Establishing the Mechanoselective Adhesion of Microorganisms to Biomaterials
建立微生物对生物材料的机械选择性粘附
- 批准号:
1904901 - 财政年份:2020
- 资助金额:
$ 34.05万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Detection and analysis of airborne coronavirus with bioinspired membranes
EAGER:合作研究:利用仿生膜检测和分析空气中的冠状病毒
- 批准号:
2029371 - 财政年份:2020
- 资助金额:
$ 34.05万 - 项目类别:
Standard Grant
Electrospinning Nanofiber Mats from Aqueous Polyelectrolyte Solutions
用聚电解质水溶液静电纺丝纳米纤维垫
- 批准号:
1727660 - 财政年份:2017
- 资助金额:
$ 34.05万 - 项目类别:
Standard Grant
EAGER: Confining biofouling using sticky stripes
EAGER:使用粘性条纹限制生物污垢
- 批准号:
1719747 - 财政年份:2017
- 资助金额:
$ 34.05万 - 项目类别:
Standard Grant
BRIGE: Engineering Antifouling Ultrafiltration Membranes Using Polycationic Nanofibers
BRIGE:使用聚阳离子纳米纤维工程防污超滤膜
- 批准号:
1342343 - 财政年份:2013
- 资助金额:
$ 34.05万 - 项目类别:
Standard Grant
相似国自然基金
基于仿生学视角的蛋黄中铁的转运、吸收分子机制研究
- 批准号:32301979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
叩甲科爆发式弹跳运动的功能形态学及仿生学研究
- 批准号:32270483
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于仿生学视角的蛋清(Ca2+)-EEWNPs螯合及促钙吸收机理研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
手性植物器官的生物力学与仿生学研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
局部多孔波浪前缘仿生学构型降噪机理研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Bioinspired High Energy Recycling Mechanism Ankle Foot Prosthesis
合作研究:仿生高能回收机制踝足假肢
- 批准号:
2231031 - 财政年份:2023
- 资助金额:
$ 34.05万 - 项目类别:
Standard Grant
Collaborative Research: Bioinspired High Energy Recycling Mechanism Ankle Foot Prosthesis
合作研究:仿生高能回收机制踝足假肢
- 批准号:
2231032 - 财政年份:2023
- 资助金额:
$ 34.05万 - 项目类别:
Standard Grant
Collaborative Research: Design, Flight Control, and Autonomous Navigation of Bioinspired Morphing Micro Aerial Vehicles for Operation in Confined Spaces
合作研究:用于密闭空间操作的仿生变形微型飞行器的设计、飞行控制和自主导航
- 批准号:
2140650 - 财政年份:2022
- 资助金额:
$ 34.05万 - 项目类别:
Standard Grant
Collaborative Research: A Bioinspired Approach towards Sustainable Membranes for Resilient Brine Treatment
合作研究:用于弹性盐水处理的可持续膜的仿生方法
- 批准号:
2226505 - 财政年份:2022
- 资助金额:
$ 34.05万 - 项目类别:
Standard Grant
Collaborative Research: A Bioinspired Approach towards Sustainable Membranes for Resilient Brine Treatment
合作研究:用于弹性盐水处理的可持续膜的仿生方法
- 批准号:
2226501 - 财政年份:2022
- 资助金额:
$ 34.05万 - 项目类别:
Standard Grant