RII Track 4: Form Finding and Optimization of the Structural Foundations of Mega-Flora
RII 轨道 4:巨型植物区系结构基础的形式查找和优化
基本信息
- 批准号:1929143
- 负责人:
- 金额:$ 24.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Foundation design has stagnated, stuck in technologies developed decades ago. Shallow and deep foundations are energy intensive and disruptive to install, inefficient in their form and shape. Infrastructure modernization critically depends on design and fabrication of systems with robust functionality at a minimum of energy and materials investments. The solution to this lethargy lays in the foundations of Mega-Flora, large trees. These natural foundation systems have been optimized for a minimum of materials while providing resistance to enormous loads. However, there is little understanding to the role large roots play in structural stability. A new generation of foundation systems can be inspired by nature, but the first step to is to study the form and shape of natural foundations. The work of this award includes mapping the form, shape and mechanics of the roots of large trees. This understanding will lead to new design paradigms. A fundamental understanding of the principles underlying the foundations of mega-flora will significantly improve our ability to design foundations that require less resources, better resist hazards, and improve life safety. Society benefits via resilient infrastructure constructed at less cost. Better knowledge of tree roots will aid foresters in conservation of America's priceless Sequoia, Redwood, and Aspen treasures.Understanding the unique shape and form of the foundation systems of mega-flora that nature seeks is important for biomimetic engineering of new structural foundations. A new generation of anthropogenic foundation systems can be inspired by these natural systems, but the first step to revitalizing of foundation engineering is to study the topology and morphology of natural foundations. We hypothesize that shape analysis and form-finding optimization techniques can be used identify the predominant forms and shapes of the root topologies that nature seeks to optimize structural stability. These optimized shapes and forms can then be used to inspire a new generation of biomimetic foundations. A global database of 1st order roots is coupled with in-situ mapping roots as inputs to Shape Analysis. Form Finding is then used to identify optimal form and shape. This project greatly advances knowledge and understanding across different fields with synergy between engineering and ecology via a fellowship at Princeton University's Form-Finding Laboratory. The research effort will result in: (1) physical model data; (2) application of geophysics to new problems, (3) new applications of shape analysis, and (4) the first use of form-finding techniques for buried systems. The behavior of foundations inspired by these shapes and mechanics will lead to new design methods. To perform the research, new methods for geotechnical analyses will be derived in the form-finding paradigm. Validation of novel in-situ imaging of buried roots is transferable to other problems of ecology and geology, as is adaptation of shape analysis for 1st order root structure optimization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基础设计已经停滞不前,停留在几十年前开发的技术上。浅基础和深基础都是能源密集型的,安装时会造成破坏,其形式和形状效率低下。基础设施现代化关键取决于以最少的能源和材料投资来设计和制造具有强大功能的系统。解决这种昏昏欲睡的问题的方法是建立巨型植物群、大树的基础。这些天然基础系统已针对最少的材料进行了优化,同时提供了对巨大负载的抵抗力。然而,人们对大根在结构稳定性中所起的作用知之甚少。新一代地基系统可以从大自然中获得灵感,但第一步是研究自然地基的形式和形状。该奖项的工作包括绘制大树根部的形式、形状和力学。这种理解将带来新的设计范式。对巨型植物区系基础原理的基本了解将显着提高我们设计基础的能力,从而减少资源消耗、更好地抵御危害并提高生命安全。社会通过以较低成本建造的弹性基础设施而受益。更好地了解树根将有助于林业工作者保护美国无价的红杉、红杉和白杨珍宝。了解大自然寻求的大型植物群基础系统的独特形状和形式对于新结构基础的仿生工程非常重要。新一代的人造地基系统可以从这些自然系统中得到启发,但振兴地基工程的第一步是研究自然地基的拓扑和形态。我们假设形状分析和找形优化技术可用于识别大自然寻求优化结构稳定性的根拓扑的主要形式和形状。这些优化的形状和形式可以用来激发新一代仿生基础。一阶根的全局数据库与原位映射根相结合,作为形状分析的输入。然后使用形状查找来确定最佳形状和形状。该项目通过普林斯顿大学形状寻找实验室的奖学金,通过工程与生态学之间的协同作用,极大地增进了不同领域的知识和理解。 研究工作将产生:(1)物理模型数据; (2) 地球物理学在新问题中的应用,(3) 形状分析的新应用,以及 (4) 首次使用埋地系统的找形技术。受这些形状和力学启发的基础行为将催生新的设计方法。为了进行研究,将在找形范式中导出岩土分析的新方法。新型埋藏根原位成像的验证可转移到生态学和地质学的其他问题,一阶根结构优化的形状分析也是如此。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Post-fire erosion potential of clayey sand soils and slopes – A laboratory study
粘土砂土和斜坡的火后侵蚀潜力 — 实验室研究
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Tabassum, Tanzila
- 通讯作者:Tabassum, Tanzila
An examination of the foundations of mega-flora; implications for biomimetic geotechnics
对巨型植物区系基础的考察;
- DOI:10.1061/9780784482834.004
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Lingwall, Bret N.
- 通讯作者:Lingwall, Bret N.
A Case History of Highwater Shore Erosion and Bank Stabilization via Tree Roots
高水位海岸侵蚀和通过树根稳定河岸的案例历史
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Lingwall, Bret N.
- 通讯作者:Lingwall, Bret N.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bret Lingwall其他文献
Bret Lingwall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bret Lingwall', 18)}}的其他基金
NSF 2026: EAGER: Accelerated carbon mineralization sequestration in cation rich rock formations via microbial augmentation and stimulation
NSF 2026:EAGER:通过微生物增强和刺激加速富含阳离子岩层中的碳矿化封存
- 批准号:
2033577 - 财政年份:2021
- 资助金额:
$ 24.21万 - 项目类别:
Standard Grant
Collaborative Research: Using Complex Problem Based Learning in Undergraduate Engineering Classrooms to Prepare Creative Engineers with the Skills to Solve Global Problems
协作研究:在本科工程课堂中使用基于复杂问题的学习来培养具有解决全球问题技能的创意工程师
- 批准号:
2021135 - 财政年份:2020
- 资助金额:
$ 24.21万 - 项目类别:
Standard Grant
The Role of Multi-Scale Porosity on Termite Mound Behavior
多尺度孔隙度对白蚁丘行为的作用
- 批准号:
1826314 - 财政年份:2018
- 资助金额:
$ 24.21万 - 项目类别:
Standard Grant
Planning Grant: Engineering Research Center for Naturally Inspired Resilient, Sustainable and Adaptable Infrastructure
规划拨款:自然灵感弹性、可持续和适应性基础设施工程研究中心
- 批准号:
1840478 - 财政年份:2018
- 资助金额:
$ 24.21万 - 项目类别:
Standard Grant
相似国自然基金
融合多源生物信息-连续知识追踪解码-无关意图拒识机制的康复外骨骼人体运动意图识别研究
- 批准号:62373344
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于三维显微图像序列的细胞追踪与迁移行为分析方法
- 批准号:62301296
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用精准谱系追踪揭示关节囊纤维化导致颞下颌关节强直的分子机制研究
- 批准号:82301010
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医养结合机构服务模式对老年人健康绩效的影响、机制与引导政策:基于准自然实验的追踪研究
- 批准号:72374125
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
三维黏弹性TTI介质中地震射线追踪及走时成像方法研究
- 批准号:42304060
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Probing form and function of memory representations in the hippocampus of memory expert birds
探索记忆专家鸟类海马体记忆表征的形式和功能
- 批准号:
10641392 - 财政年份:2023
- 资助金额:
$ 24.21万 - 项目类别:
Vitamin D control of calorie allocation to muscle
维生素 D 控制肌肉的热量分配
- 批准号:
10567569 - 财政年份:2023
- 资助金额:
$ 24.21万 - 项目类别:
"Examining Marketing and Parents’ Perceptions of Toddler Milk”
“审视营销和家长对幼儿牛奶的看法”
- 批准号:
10464361 - 财政年份:2022
- 资助金额:
$ 24.21万 - 项目类别:
"Examining Marketing and Parents’ Perceptions of Toddler Milk”
“审视营销和家长对幼儿牛奶的看法”
- 批准号:
10617697 - 财政年份:2022
- 资助金额:
$ 24.21万 - 项目类别:
Development of railroad track bed-ties form recycled tires
利用再生轮胎开发铁路轨枕
- 批准号:
453351-2013 - 财政年份:2013
- 资助金额:
$ 24.21万 - 项目类别:
Engage Grants Program