NSF-BSF: CIF: Small: Self-adapting Code Generation in Rate-distortion Theory, Machine Learning, and Channel Coding

NSF-BSF:CIF:小型:率失真理论、机器学习和信道编码中的自适应代码生成

基本信息

  • 批准号:
    1909423
  • 负责人:
  • 金额:
    $ 49.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

This project builds on the investigators' early information-theoretic results, establishing a mechanism called 'natural type selection' for source coding, which adapts a randomly generated code and is shown to be asymptotically optimal. Fundamental expansions of this framework will be pursued to develop universally applicable methodologies, and thereby yield contributions to information theory itself alongside powerful learning techniques in other application fields, including wireless communications, content delivery, social media, artificial intelligence, and others. From the educational perspective, the project offers a training opportunity for graduate students to experience, first-hand, an international and interdisciplinary research collaboration, which combines theoretical depth with practical impact. It further offers opportunities for extensive curriculum enrichment, and to produce accomplished researchers and practitioners with capacities and skills that are in high demand.This project will develop novel approaches to learning, which employ universal self-adapting mechanisms for random code generation, designed to asymptotically achieve optimality for unknown source distributions. Research will be pursued, in terms of both theoretical analysis of performance bounds and powerful optimization approaches, along three main thrusts: i) Extension of the natural type selection framework to encompass continuous spaces and sources with memory, leveraging the concept of "parametric type" for continuous alphabets, which would expand applicability to virtually all practical scenarios of interest. ii) Applications in machine learning, where supervised learning (e.g., classification, regression) is reformulated as the rate-distortion problem of seeking the minimal amount of information to be learned from a source such that a desired output at the prescribed fidelity can be read from a random codebook; and, on the unsupervised learning side, where the "information bottleneck" method is reformulated universally in a self-adapting codebook generation setting. Both will leverage the optimization framework of deterministic annealing. iii) Applications in communications where stochastic mechanisms are developed for optimal channel input adaptation, including an important extension to multi-user communications which requires the development of a "distributed natural type selection" framework. This project is a collaborative effort between researchers in the US and Israel, with funding for Israeli researchers provided by the Bi-National Science Foundation (BSF).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目建立在研究人员早期信息论成果的基础上,建立了一种称为“自然类型选择”的源编码机制,该机制采用随机生成的代码,并被证明是渐近最优的。我们将寻求对该框架的根本扩展,以开发普遍适用的方法,从而为信息论本身以及其他应用领域(包括无线通信、内容交付、社交媒体、人工智能等)强大的学习技术做出贡献。从教育角度来看,该项目为研究生提供了亲身体验国际跨学科研究合作的培训机会,将理论深度与实际影响相结合。它还提供了广泛丰富课程的机会,并培养了具有高需求能力和技能的有成就的研究人员和从业者。该项目将开发新颖的学习方法,采用通用的随机代码生成自适应机制,旨在渐近地实现未知源分布的最优。将根据性能界限的理论分析和强大的优化方法,沿着三个主要方向进行研究:i)利用“参数类型”的概念,扩展自然类型选择框架,以涵盖具有记忆的连续空间和源对于连续字母表,这将扩展适用性到几乎所有感兴趣的实际场景。 ii) 机器学习中的应用,其中监督学习(例如分类、回归)被重新表述为速率失真问题,即寻求从源中学习的最小信息量,以便可以读取指定保真度下的所需输出来自随机密码本;并且,在无监督学习方面,“信息瓶颈”方法在自适应码本生成设置中被普遍重新表述。两者都将利用确定性退火的优化框架。 iii)在通信中的应用,其中开发了随机机制以实现最佳信道输入适应,包括对多用户通信的重要扩展,这需要开发“分布式自然类型选择”框架。 该项目是美国和以色列研究人员之间的合作成果,由美国国家科学基金会 (BSF) 为以色列研究人员提供资金。该奖项反映了 NSF 的法定使命,并通过使用该基金会的智力评估进行评估,认为值得支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Stochastic Rate-Distortion Approach to Supervised Learning Systems
监督学习系统的随机率失真方法
  • DOI:
    10.1109/isit54713.2023.10206453
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elshafiy, Ahmed;Namazi, Mahmoud;Rose, Kenneth
  • 通讯作者:
    Rose, Kenneth
On Effective Stochastic Mechanisms for On-The-Fly Codebook Regeneration
动态码本再生的有效随机机制
On Stochastic Codebook Generation for Markov Sources
马尔可夫源的随机码本生成
  • DOI:
    10.1109/dcc55655.2023.00039
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elshafiy, Ahmed;Rose, Kenneth
  • 通讯作者:
    Rose, Kenneth
Stochastic Codebook Regeneration for Sequential Compression of Continuous Alphabet Sources
连续字母源顺序压缩的随机码本再生
On-The-Fly Stochastic Codebook Re-generation for Sources with Memory
具有内存的源的动态随机码本重新生成
  • DOI:
    10.1109/itw46852.2021.9457666
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elshafiy, Ahmed;Namazi, Mahmoud;Zamir, Ram;Rose, Kenneth
  • 通讯作者:
    Rose, Kenneth
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenneth Rose其他文献

Modeling developable surfaces from arbitrary boundary curves
根据任意边界曲线对可展曲面进行建模
  • DOI:
    10.14288/1.0052002
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kenneth Rose
  • 通讯作者:
    Kenneth Rose
Optimal estimation for error concealment in scalable video coding
可伸缩视频编码中错误隐藏的最优估计
Emergency Department Visits for Pedestrians Injured in Motor Vehicle Traffic Crashes — United States, January 2021–December 2023
急诊科探访机动车交通事故中受伤的行人——美国,2021 年 1 月至 2023 年 12 月
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vaughn Barry;Miriam E Van Dyke;Jasmine Y. Nakayama;H. Zaganjor;Michael Sheppard;Zachary Stein;Lakshmi Radhakrishnan;Emily Schweninger;Kenneth Rose;Geoffrey P. Whitfield;Bethany West
  • 通讯作者:
    Bethany West
Modeling of power delivery into 3D chips on silicon interposer
硅中介层上 3D 芯片的电力传输建模
Hepatopulmonary syndrome and venous emboli causing intracerebral hemorrhages after liver transplantation: a case report.
肝移植后肝肺综合征和静脉栓塞引起脑出血一例报告。
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Gary A. Abrams;Kenneth Rose;Michael B. Fallon;Brendan M. McGuire;Joseph R. Bloomer;Dirk J. van Leeuwen;Tamara Tutton;Marty T. Sellers;D. Eckhoff;J. Steven Bynon
  • 通讯作者:
    J. Steven Bynon

Kenneth Rose的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenneth Rose', 18)}}的其他基金

CIF: Small: The Common Information Framework and Optimal Coding for Layered Storage and Transmission of Audio Signals
CIF:Small:音频信号分层存储和传输的通用信息框架和最佳编码
  • 批准号:
    1320599
  • 财政年份:
    2013
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
CIF: Small: Analog Networking: Distributed Source-Channel Approaches to Delay and Resource Constrained Communications
CIF:小型:模拟网络:解决延迟和资源受限通信的分布式源通道方法
  • 批准号:
    1118075
  • 财政年份:
    2011
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
CIF: Small: An Integrated Framework for Distributed Source Coding and Dispersive Information Routing
CIF:小型:分布式源编码和分散信息路由的集成框架
  • 批准号:
    1016861
  • 财政年份:
    2010
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Continuing Grant
CIF: Small: A Resource-Scalable Unifying Framework for Aural Signal Coding
CIF:小型:用于音频信号编码的资源可扩展统一框架
  • 批准号:
    0917230
  • 财政年份:
    2009
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Optimization of Distributed Coding for Sources with Memory and Applications in Sensor Networks
带内存的分布式编码源优化及其在传感器网络中的应用
  • 批准号:
    0728986
  • 财政年份:
    2007
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Effects of Climatic/Environmental Change on Early Eocene Mammal Fauna of the Bighorn Basin, Wyoming
合作研究:气候/环境变化对怀俄明州比格霍恩盆地早始新世哺乳动物群的影响
  • 批准号:
    0616376
  • 财政年份:
    2006
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Continuing Grant
Fast Approximate Search and Retrieval of High-Dimensional Data
高维数据的快速近似搜索和检索
  • 批准号:
    0329267
  • 财政年份:
    2004
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Improvement: Paleoecological Modeling and the Evolution of Early Eocene Primates in the Bighorn Basin, WY
博士论文改进:怀俄明州比格霍恩盆地的古生态模型和早期始新世灵长类动物的进化
  • 批准号:
    0303768
  • 财政年份:
    2003
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: An Integrated High-Resolution Study of the Effects of Shifting Climate on Late Paleocene-Early Eocene Continental Ecosystems
合作研究:气候变化对古新世晚期-始新世早期大陆生态系统影响的综合高分辨率研究
  • 批准号:
    0000941
  • 财政年份:
    2001
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
CISE Research Instrumentation: Research in Computational Multimedia
CISE 研究仪器:计算多媒体研究
  • 批准号:
    9986057
  • 财政年份:
    2000
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant

相似国自然基金

枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
  • 批准号:
    31871988
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
  • 批准号:
    61774171
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
  • 批准号:
    38870708
  • 批准年份:
    1988
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
  • 批准号:
    2308446
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
  • 批准号:
    2308445
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
NSF-BSF:CIF:Small:Reliable Data Storage on Sampling Channels
NSF-BSF:CIF:Small:采样通道上的可靠数据存储
  • 批准号:
    2330309
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
NSF-BSF: CIF: Small: From storage codes to recoverable systems
NSF-BSF:CIF:小型:从存储代码到可恢复系统
  • 批准号:
    2110113
  • 财政年份:
    2021
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
NSF-BSF:CIF: Small: A Unified View of Estimation and Information Relationships for Networks and Beyond
NSF-BSF:CIF:小型:网络及其他领域的估计和信息关系的统一视图
  • 批准号:
    1908308
  • 财政年份:
    2019
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了