ISS: Cellular Mechanotransduction by Osteoblasts in Microgravity

ISS:微重力下成骨细胞的细胞力转导

基本信息

项目摘要

Osteoporosis causes bones to become weak and brittle as individuals age and commonly leads to fracture with low forces or a fall. It is well appreciated that weight-bearing exercises are beneficial to the bones and lowers the risk of osteoporosis. In space, microgravity causes a number of physiological changes -- such as heart and bone deconditioning -- and represents a unique experimental environment to test biological hypotheses an environment that speeds up pathological changes. Despite a deep understanding of the outcomes of bone formation and bone loss in bone biomechanics, the mechanism of how applied loading affects the cells and causes bone loss and osteoporosis is not entirely clear. Recent research has suggested that a group of proteins, known as transcription factors, control gene expression in the nucleus of a cell and can be regulated by the stiffness of a cell. Leveraging the unique experimental environment on the International Space Station (ISS), this project will quantify the effect of microgravity on the stiffness of osteoblasts - bone forming cells - and relate this to the signaling that occurs due to key proteins. In addition, the development and function of osteoblasts in microgravity will be compared with and without the addition of mechanical compression in order to see if this returns function to a normal state. Answering these questions will support an increased understanding of how changes in bone loading cause bone loss and osteoporosis, which will in turn support improved prevention and treatment development. The research results will be shared broadly with the public through public talks, seminars, and publications. The PI will collaborate with the Detroit Area Pre-College Engineering Program to develop a bioengineering module for the Saturday Series program for middle school students. This research combines microfluidic devices, cell biology, and bioengineered systems to test the hypothesis that cell mechanics regulates the crosstalk between YAP translocation and Bone Morphogenic Protein (BMP) signaling in the context of osteoblast maturation. The first objective will determine if microgravity affects osteoblast mechanosensitivity by reduceing cell tension and thereby regulationg YAP/BMP crosstalk. The second objective will apply mechanical compression to osteoblasts to see if they recover their mechanosensitivity, as demonstrated by restored YAP/BMP signaling. The project will implement a microfluidic device to autonomously measure the mechanical properties of cells under microgravity and compare these with measurements performed on Earth. The effect of cell tension on BMP signaling and YAP translocation will be measured both on Earth and at the ISS. The ability for mechanical compression to restore BMP signaling of osteoblasts in 3D spheroids under microgravity will also be examined. This work will deliver new bioengineering platforms that will extend current research abilities on the ISS. Significant insights will be gained at the nexus of cell tension, YAP nucleocytoplasmic shuttling, and BMP signaling.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着年龄的增长,骨质疏松症会导致骨骼变得脆弱,通常会导致低力骨折或跌倒。众所周知,负重运动有益于骨骼并降低骨质疏松症的风险。在太空中,微重力会引起许多生理变化,例如心脏和骨骼功能失调,并代表了一个独特的实验环境来测试生物假设,这是一个加速病理变化的环境。尽管对骨生物力学中骨形成和骨丢失的结果有了深入的了解,但施加的载荷如何影响细胞并导致骨丢失和骨质疏松的机制尚不完全清楚。最近的研究表明,一组称为转录因子的蛋白质控制细胞核中的基因表达,并且可以通过细胞的硬度进行调节。该项目将利用国际空间站 (ISS) 独特的实验环境,量化微重力对成骨细胞(骨形成细胞)硬度的影响,并将其与关键蛋白质产生的信号传导联系起来。 此外,还将比较微重力下成骨细胞在机械压缩和不机械压缩的情况下的发育和功能,以了解其功能是否恢复到正常状态。 回答这些问题将有助于更好地了解骨负荷的变化如何导致骨质流失和骨质疏松症,从而支持改进预防和治疗开发。 研究成果将通过公开演讲、研讨会和出版物与公众广泛分享。 PI 将与底特律地区大学预科工程项目合作,为中学生周六系列项目开发生物工程模块。 这项研究结合了微流体装置、细胞生物学和生物工程系统,以检验细胞力学在成骨细胞成熟过程中调节 YAP 易位和骨形态发生蛋白 (BMP) 信号传导之间的串扰的假设。 第一个目标将确定微重力是否通过降低细胞张力从而调节 YAP/BMP 串扰来影响成骨细胞的机械敏感性。 第二个目标将对成骨细胞施加机械压缩,看看它们是否恢复机械敏感性,如恢复的 YAP/BMP 信号所证明的那样。 该项目将采用一种微流体装置来自动测量微重力下细胞的机械性能,并将其与在地球上进行的测量进行比较。细胞张力对 BMP 信号传导和 YAP 易位的影响将在地球和国际空间站上进行测量。还将检查机械压缩在微重力下恢复 3D 球体中成骨细胞 BMP 信号传导的能力。这项工作将提供新的生物工程平台,从而扩展国际空间站当前的研究能力。我们将在细胞张力、YAP 核细胞质穿梭和 BMP 信号传导之间的关系中获得重要见解。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Allen Po-Chih Liu其他文献

Allen Po-Chih Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Allen Po-Chih Liu', 18)}}的其他基金

Sensing and modulating the chemokine environment with synthetic cells
用合成细胞感知和调节趋化因子环境
  • 批准号:
    10566980
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201236
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Development of a mechanosensitive synthetic cell for mediating intercellular communication.
开发用于介导细胞间通讯的机械敏感合成细胞。
  • 批准号:
    10643814
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
Development of a mechanosensitive synthetic cell for mediating intercellular communication.
开发用于介导细胞间通讯的机械敏感合成细胞。
  • 批准号:
    10251872
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
Development of a mechanosensitive synthetic cell for mediating intercellular communication.
开发用于介导细胞间通讯的机械敏感合成细胞。
  • 批准号:
    10722432
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
Development of a mechanosensitive synthetic cell for mediating intercellular communication.
开发用于介导细胞间通讯的机械敏感合成细胞。
  • 批准号:
    10031135
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
Development of a mechanosensitive synthetic cell for mediating intercellular communication.
开发用于介导细胞间通讯的机械敏感合成细胞。
  • 批准号:
    10544399
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
Reconstituting Biology – a Chart to Minimal Cells
重建生物学——最小细胞图表
  • 批准号:
    2013809
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Development of a mechanosensitive synthetic cell for mediating intercellular communication.
开发用于介导细胞间通讯的机械敏感合成细胞。
  • 批准号:
    10396123
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
ST2: Programmable Interfaces- Exploring the Intersection of Synthetic Biology, Biomaterials, and Soft Matter
ST2:可编程接口 - 探索合成生物学、生物材料和软物质的交叉点
  • 批准号:
    1939310
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

面向高移动场景的空-地协同新型非蜂窝立体网络建模与资源优化研究
  • 批准号:
    62301172
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
嵌合抗原受体巨噬细胞(CAR-M)微马达的制备及其血管蜂窝网络磁驱行为机理与控制方法研究
  • 批准号:
    52375565
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
用户无感的去蜂窝网络主动式资源分配与优化
  • 批准号:
    62371264
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
智能超表面赋能的无蜂窝网络协同传输理论与方法研究
  • 批准号:
    62301108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于图神经网络的蜂窝网络中D2D通信资源分配方法研究
  • 批准号:
    62371462
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
  • 批准号:
    10655891
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Protein tyrosine phosphatase non-receptor 14 in vascular stability and remodeling
蛋白酪氨酸磷酸酶非受体 14 在血管稳定性和重塑中的作用
  • 批准号:
    10660507
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Generation of Neurons by Force-Mediated Epigenetic Mechanisms through Manipulation of Intrinsic Mechanoregulators
通过操纵内在机械调节器通过力介导的表观遗传机制产生神经元
  • 批准号:
    10664507
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Diversification of the mechanotransduction complex in vestibular hair cells
前庭毛细胞中机械转导复合体的多样化
  • 批准号:
    10734358
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Forcing the sinoatrial node pacemaker function
强制窦房结起搏器功能
  • 批准号:
    10659980
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了